
Abstract 

While modern aerial imagery is frequently used to 
produce accurate 3D reconstructions of buildings, 
cities, and natural features, there has been little work 
to do the same with historical photographs. Though 
these datasets exist, they present their own unique 
challenges as the imaging systems used are rarely 
designed with computer-aided reconstruction in 
mind. We present a processing pipeline that accepts 
coarsely-georectified aerial photographs and 
produces a 3D point cloud of any region appearing in 
at least two images. Our methods leverage the 
existing georectifications (available for most 
historical aerial photo collections) to reduce the 
search space and save processing time, and to provide 
an initial estimate of structure. We employ AKAZE 
features to sparsely match images and perform a 
bundle adjustment using the Levenberg-Marquardt 
algorithm to produce an accurate point cloud. While 
our techniques were developed specifically for use on 
the set of aerial photos of San Francisco captured in 
1938 by Harrison Ryker, we believe they will 
generalize well to any set of georectified historical 
photos. 

Introduction 

Historical photographs hold a wealth of information 
about the visual and spatial contours of the recent 
past. When buildings are demolished, artworks 
destroyed in violent conflict, and landscapes 
transformed by human settlement, photographs 
preserve precious fragments of our cultural heritage 
and natural history. However, the unique challenges 
posed by historical imagery have limited the utility of 
the photographic archive. Historical photographs are 
typically taken for human viewers, not computers, 
and so they lack the redundancy that is required by 

computational methods which exploit overlap 
disparities. Age, wear, and damage introduce artifacts 
which make the problem more difficult. Historical 
images also lack metadata like camera calibration and 
location information. The small size of these 
photographic collections make it difficult to recover 
missing metadata (projects like the PhotoTourism 
leverage the large size of the dataset to estimate the 
placement and calibration of uncalibrated images). 

We design a system to perform 3D reconstruction of 
a landscape from uncalibrated, historical aerial 
imagery. This system is applied to the particular case 
of reconstructing 1938 San Francisco from a set of 
historical aerial photographs. 

Problem Statement 

We propose to generate a 3D reconstruction of the 
topography of San Francisco in 1938 from a ​set of 
164 black-and-white aerial photographs​ of the city 
taken in 1938 and digitized in 2011 by the David 
Rumsey Map Collection at Stanford. The 
photographs have been ​orthorectified and mosaiced​, 
but the topography has not been reconstructed. 
 
There are a number of challenges to reconstructing 
the topography of the city from these historical aerial 
images. Chief among these challenges is that there is 
limited multi-image coverage of the city. 
Approximately 50% of the city is covered by only a 
single image; small patches of the city are covered by 
two, three, and occasionally four images where the 
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aerial photographs overlap (see ​overlap map​). In 
addition, there is no calibration or altitude 
information for the camera. Conventional methods 
for processing aerial imagery rely on rational 
polynomial coefficient (RPC) sensor models 
provided by the camera manufacturer, as well as 
altitude data from the camera.  The sparsity of the 
images and the lack of camera calibration make such 
methods unsuitable for this problem. 
 

Related Work 
3D reconstruction as a field has seen a wealth of 
work in the last 30 years. Most applicable to our 
pipeline is the Phototourism project, which 
reconstructed famous landmarks from around the 
world using uncalibrated datasets of images from the 
internet. The Phototourism project relies on the SBA 
(Sparse Bundle Adjustment) library developed by 
Lourakis and Argyros​, which we use in our 
implementation and which is remarkable for its 
flexible implementation of the Levenberg-Marquardt 
nonlinear optimization algorithm. 
Sevara et Al​ present a similar pipeline for extracting 
geographic contours from historic flight imagery. 
Their implementation contains useful pre- and 
post-processing steps for working with historic 
photos, but relies on proprietary software packages 
for the majority of the 3D reconstruction task. We 
seek to extend this work and make it more accessible 
by using only open-source libraries that are available 
to any developer. 

One of the challenges in developing this system is 
that of finding a feature detector that was robust to 
the unique noise sources in the Ryker image dataset. 
We find the accelerated version of ​Alcantarilla et al​’s 
KAZE features to be very effective. The nonlinear 
scale space used in KAZE features avoids smoothing 
out higher-frequency detail that is lost to traditional 
gaussian feature detectors like SIFT and ORB. For 
the AKAZE (Accelerated KAZE) feature 
implementation and for many of the other traditional 
vision techniques we use, we turn to the ​OpenCV 
library. 

Technical Approach 

Image Partitioning 

Because Ryker’s aerial photographs were taken 
before the development of computational methods for 
3D reconstruction, successive images overlap only in 
small areas. Matching and cropping these areas of 
overlap limits the scope of the keypoint identification 
problem and increases the accuracy of the keypoint 
matches. 
 
We use ​GDAL​ and ​CGAL​ to match and crop the 
images. The boundaries of the orthorectified images 
are arbitrary quadrilaterals (rectangles with a 
projective transformation applied). We extract these 
orthorectified boundaries using gdalinfo. 
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We insert the boundaries into a CGAL ​arrangement​. 
For each image, we output a set of masks 
corresponding to the faces of the arrangement which 
overlap with the image. We use the resulting masks 
to crop the images. We also perform image fragment 
matching during this step. Once the masks are 
extracted, we map them back to the original images 
by calculating a projective transformation between 
the orthorectified geographic coordinates and the 
image coordinates. 
 
The benefit of treating the set of images as an 
arrangement is that, unlike a triangulation or polygon 
partitioning approach, the resulting partition respects 
the boundaries of the images. 

Keypoint Detection & Matching 

One of the challenges of the Ryker dataset is the 
condition of the photos. There are numerous small 
tears and abrasions that, while they don’t 
significantly impact or distort the structure of the 
photographs, provide sharp edges that draw many 
Gaussian-based keypoint detectors. What’s more, at 
some point in its history the photo collection was 
hand-labeled with street names in black ink. These 
labels present additional strong edges and are 
particularly challenging for keypoint finding, as the 
strongest keypoints are formed by the labels. We 
investigated the possibility of using the 
Neumann-Matas​ text localization algorithm to bound 
and mask out these labels, but determined in testing 
that direct modifications to our keypoint finding 
algorithm provided a less-expensive and more elegant 
alternative.  

Rather than using a gaussian-based keypoint detector 
such as ORB, we found that AKAZE features were 
extremely robust to sharp edges, remaining evenly 
distributed across the image and providing plenty of 
“real” features aside from the outliers produced by 
the street labels. After a brute-force search for 
keypoint matches, we select pairs of keypoints that 
pass the ratio test as proposed by ​Lowe​. These 
keypoint matches are further pruned using a 
RANSAC homography fit to remove any remaining 
outliers. Finally, we discard the surviving matches if 
there are less than 8 total, since there is a high 

probability of finding a successful RANSAC fit that 
includes outliers with such small numbers of points. 

Sparse SfM & Bundle Adjustment 

Once an accurate set of matched keypoints in each 
overlapped region of the dataset has been found, we 
use a Structure from Motion processing pipeline to 
estimate both the locations of the image points in 3D 
space and the camera model used to capture each 
image. Our pipeline differs from many SfM processes 
in that we do not have an accurate description of the 
camera intrinsic properties a priori. Furthermore, 
given the coarse placement of the analog images on 
the scanner glass during digitization, the camera 
intrinsics may vary significantly from image to 
image. We use the Levenberg-Marquardt algorithm 
as implemented by ​Lourakis and Argyros​ in the ​SBA 
library​ to minimize the reprojection error of the 
points into the image plane as the camera model and 
point locations are varied, subject to a square pixel 
constraint.  

Our camera model as used in the bundle adjustment 
pipeline has 11 free parameters: focal length (1) 
aspect ratio (1) skew (1) image center (2) rotation 
relative to the world frame (3) and translation relative 
to the world frame (3). While the rotation is stored as 
three parameters, during calculations it is represented 
as a quaternion with an extra degree of freedom. This 
avoids the problem of gimbal lock that occurs in 
Euler-rotating systems. Each image has a unique and 
separately-optimized camera. Each point in the world 
fram is three-dimensional, and is represented on a 1 
meter scale.  

To initialize the parameters in the model, we assume 
that all the 3D points lie on a perfect plane with 
altitude Z = 0, and all cameras are oriented directly 
down at the ground at an altitude of 2000m. We use 
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the georegistered pixel coordinates for image 
coordinates, meaning that the (u,v) coordinate axes in 
the image plane are aligned with the cardinal axes in 
the world plane. For simplicity of initialization, we 
set the world coordinate system to have positive X in 
an eastward direction, positive Y in a southern 
direction, and positive Z oriented towards the ground. 
This ensures that the initial rotation between the 
world frame and the camera frame is zero. The X and 
Y coordinates of points in the world frame are 
initialized using the georegistration transform 
provided with each digitally registered image in the 
collection. 

We run the Levenberg-Marquardt bundle adjustment 
routine on all points and images simultaneously, 
instead of on one pair of overlapped images at a time. 
This allows information about camera intrinsics 
derived from one overlapped area to inform the 
optimization routine in another overlapped region of 
the same image.  

In our initial implementation, we do not bother 
tracking individual world points across more than 
two images at a time. If a point appears in more three 
photos, say, it is optimized separately, as if it were 
three points, one appearing in images one and two, 
one appearing in images 2 and 3, and one appearing 
in images 1 and 3. Empirically the routine still 

performs well despite the extra degrees of freedom, 
and point clouds in multiple-overlap regions appear 
to effectively coregister. 

Results 

The full pipeline can process a set of 10 overlapped 
images in approximately 15 minutes. The time grows 
faster than linearly for larger numbers of images; 
because there are multiple overlapping polygons 
created with each additional image, it takes many 
hours to process the entire set of 154 images. 
Interestingly, the iterative bundle adjustment is one of 
the fastest parts of the process, taking approximately 
10% of processing time. The majority of time is 
consumed by the AKAZE feature calculation process, 
followed by the geometric segmentation of the 
images.  

The point cloud produced by our process effectively 
maps the macro-features of the San Francisco 
landscape. Hills and valleys are realistic to their 
modern topography, as can be seen in the figure 
showing Twin Peaks. Finer features, such as 
buildings and streets, are not visible in the 3D 
structure except as variations in the point cloud 
density because of the relative availability of good 
features on different surfaces. It is difficult to gauge 
at what scale the cloud begins to resolve 3D features, 



as there area few structures in 1938 San Francisco 
between the size of a four-story building and a hill; 

perhaps the Salesforce tower or the Transamerica 
Pyramid would have been resolvable  had they been 
constructed in the 1930s. 

It is remarkable how important the number of images 
is to reliable reconstruction, even when those images 
do not overlap significantly. A reconstruction using 
just three or four images will often show significant 
affine distortion, which is greatly reduced as the 
image set is expanded beyond ten photos.  

Evaluation 
We propose (though we do not implement) a method 
of evaluation against digital elevation models 
(DEMs) that can be used to assess the accuracy of 
such reconstructions. First, the reconstructed points 
must be brought into the same geographic coordinate 
reference system as the DEM (this can be done with 
widely-available tools like the Geo Data Abstraction 
Library, or GDAL). Second, each reconstructed point 
should be associated with a pseudo-point in the DEM 
(the pseudo-point can be, for example, the center 
latitude and longitude of the bin containing the 
reconstructed point, and the elevation of that bin). 
The associations between the two sets of points can 
be used to fit an affine transformation between the 
reconstruction and the digital elevation model. This 

affine transformation is important because the 
reconstruction given by structure-from-motion is only 

known up to an affine transformation, so even a 
high-quality reconstruction need not match up at all 
with the DEM. This affine transformation, once 
obtained, can be applied to the reconstructed points to 
bring them into alignment with the DEM. Next, the 
reconstructed point cloud should be binned at the 
resolution of the digital elevation model, and the 
elevation averaged over each bin. The difference 
between the binned reconstructed points and the 
DEMs can be visualized as a heatmap to show the 
accuracy of the reconstruction. Aggregate statistics of 
this binning (e.g. RMSE) can be used to provide a 
quantitative summary of the quality of the 
reconstruction.  
 

Future Work 

While our point cloud is accurate at the large scale, 
we believe there is work that can be done to improve 
its accuracy at the small scale. This might rely on 
more accurate or careful keypoint finding, or perhaps 
on supplementing the aerial dataset with 
contemporary photographs shot from the ground, in 
the style of the Phototourism project. 

We believe that one of the most severe obstacles to 
practical use for our reconstruction is its sparseness, 
and the fact that significant sections of the city only 
appear in individual images, foiling the use of 



conventional binocular stereo reconstruction 
techniques to obtain 3D information. Though 
difficult, we don’t believe this problem is 
insurmountable, especially given the recent 
developments in deep learning for image processing. 
We envision an extension to this pipeline that uses a 
deep neural network trained on overlapped sections 
to estimate the 3D structure of non-overlapped 
regions of the city. The structure of this agent might 
be supplemented with traditional monocular 
metrological techniques such as vanishing point 
analysis. 

We are most excited by the potential for this 
technique to be applied to other datasets and other 
regions of the globe. At its best, such a system might 
become a 3D software suite similar to Google Street 
View, but which allows the user to explore an area 
through time as well as space. We think the 
possibilities are very exciting. 

Appendix 

Code: 
https://github.com/garlic-guardian-and-the-crouton-ki
d/ryker-sf 
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