
Dynamic Baseline Binocular Stereo

Using Multirotor UAVs

Joseph Bolling, Ankush Gola, ‘15

Submitted in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Engineering

Department of Electrical Engineering

Princeton University

Final Report

May 1, 2015

Professor Andrew A. Houck

Professor Peter J. Ramadge

ELE 497/498

69 pages

c© Copyright by Joseph Bolling, Ankush Gola, 2015.

All Rights Reserved

This thesis represents my own work in accordance with University regulations.

Abstract

We design and implement a 3D film-making system in which the left and right perspec-

tives are shot from independent unmanned aerial vehicles (UAVs), thereby producing

a stereo vision system with a dynamically variable baseline and elevated perspec-

tive. This system allows for novel visual effects due to the amplified depth perception

achieved from the wide baseline. Furthermore “shrinking” and “growing” effects are

achievable by dynamically varying the baseline. Our designs are motivated by research

into human stereopsis and existing work in computer vision. We discuss our UAV

platform design, techniques for UAV control and synchronization, current progress in

enhancing vehicle state estimation through vision-based UAV localization, and our

video stabilization pipeline. We achieve video that is comfortably viewable and lay

the groundwork for further system enhancements.

iii

Acknowledgements

To see through the eyes of a giant you first have to stand on the shoulders of giants.

Thanks to everyone I interacted with while completing this thesis, your smiles and

support kept me on track even at my most frantic. Specifically: Thanks to Ankush

for fixing my python code, staying up all night to get one last plot, never hesitating

to try the next moonshot idea we come up with, and for constantly laughing with

me. Its been a great four years.

Thanks to Professor Houck, for his willingness to take time to advise us even at

his busiest, his never-ending insights, and for challenging us to do better without

ever putting us down. Without Professor Houcks faith in us, we would never have

attempted such a project.

Thanks to Professor Ramadge for taking an interest in our project without ever

being required to. Ankush and I started this project with a vague idea of what image

processing was, and only managed to solidify it into a working knowledge of the field

with the help of Professor Ramadge.

Thanks to Professors Verma, Kornhauser, and Stengel for pushing me academ-

ically and extra-curricularly in ways I didnt know I could be pushed. They have

inspired my interests and taught me lessons that will stay with me forever.

Thanks to everyone at PAVE- Gabe, Dan, Horia, and Marcus for learning what

a Kalman Filter was with me. Derrick for his ability to solve literally any problem.

Kevin, Artur, John, Travis, Chris, and Stephen for taking up the mantle and making

this club into more than I ever hoped it could be. Chip for being the mentor we

needed. To the Outdoor Action family thank you for challenging me to be more

than just an engineer. Rick, Caroline, Kevin, LTs, TSTs, WFRs, and LNTMEs, and

all the other abbreviations, thanks for helping me to learn and have fun doing it. To

Penna and the Princeton Chapel Choir, thank you for giving me a home the last two

years, and then for moving that home to Southern Spain for a week. Its been a blast.

To everyone at Terrace Food=Love.

Thanks to my freshman hallway Michael, Caleb, Alvina, Danielle, Josh, Lexi, and

the rest - for all the inside jokes. Thanks to Todd and Dave for making me realize

how incredibly cool engineering is.

Above all thank you to my family. Amy, Sarah, Di, James, Mom, and Dad. There

are no words that can describe you, but here are a few anyways. Thanks for being

parents, siblings, role models, friends, and mentors all at once.

Finally thank you to Abby for listening, walking, laughing, crying, cuddling, and

learning with me.

iv

Contents

Abstract . iii

Acknowledgements . iv

List of Figures . vii

1 Introduction 1

1.1 Motivation . 1

1.2 System Overview . 1

2 Platform 3

2.1 3DR X8 Multirotor UAVs . 3

2.1.1 Sensor Configuration . 4

2.2 GoPro Hero 3 White . 5

2.3 Logitech C920 . 5

2.4 Beaglebone Black . 6

2.5 Oculus Rift . 6

2.6 Ground Control Station . 7

3 UAV Control 8

3.1 Overview . 8

3.1.1 Server States . 10

3.1.2 Client States . 11

3.2 Implementation Details . 13

3.2.1 MAVLink Bindings . 13

3.2.2 DroneKit . 14

3.2.3 Inter-Process Communication 15

4 Vision-Based UAV Localization 17

4.1 Laser-Based Distance Measurement 18

4.1.1 Required Improvements for Practical Use 19

v

4.2 Flight Hardware Configuration . 19

4.3 Existing Work . 20

4.4 Ball-tracking Algorithm . 21

4.4.1 Naive Masking . 22

4.4.2 Image Segmentation using the Support Vector Machine 23

4.4.3 Circle Detection . 25

4.4.4 Infinite Impulse Response Filter 28

4.4.5 State Estimation Using Detected Ball 28

5 Post-Processing and Video Stabilization 34

5.1 Thresholds for Comfortable Viewing 34

5.1.1 Human Depth Perception . 34

5.1.2 Oculus Rift Simulations . 36

5.2 Sensor fusion . 37

5.2.1 Dynamic Model . 37

5.2.2 Unscented Kalman Filter . 43

5.3 Camera Frame Corrections . 47

5.3.1 Existing Stereo Rectification Techniques 47

5.3.2 Rotational Corrections . 50

5.3.3 Translational Corrections . 53

6 Conclusions and Future Work 55

6.1 Depth-Aware Translational Corrections 55

6.2 Online System . 56

A Code 61

vi

List of Figures

1.1 System Overview . 2

2.1 3DR X8 UAV . 4

2.2 Beaglebone Black . 6

3.1 FSM Controller . 9

3.2 Formations . 10

3.3 Software Stack . 14

3.4 MAVProxy Shell . 15

4.1 Laser Distance Meter . 18

4.2 Tracking Gimbal . 19

4.3 Mounting Configurations . 20

4.4 HSV and SVM Ball Detection . 26

4.5 Morphological Operations . 26

4.6 Plot of IIR Filter . 29

4.7 Ball Detected in Video Frame . 29

4.8 Sample Camera Calibration Image 31

4.9 3D Plot of Visual Position Estimates 33

5.1 Simulated 3D Environment . 36

5.2 Geometry of Stereopsis . 37

5.3 Quadcopter and X8 Frame Comparison 40

5.4 Linear Fit to Determine Model Parameter K1 42

5.5 Unscented Kalman Filter Covariances 46

5.6 Unscented Kalman Filter Means . 47

5.7 Epipolar Geometry . 49

5.8 Unrectified Stereo Image . 50

5.9 Undistorted Stereo Image . 52

5.10 Rotationally Rectified Stereo Image 53

vii

5.11 Planar image rectification . 54

viii

Chapter 1

Introduction

1.1 Motivation

The 3D film-making industry is rapidly expanding, but has seen no novel effects

that take advantage of emerging 3D viewing media. Furthermore, the commercial

Unmanned Aerial Vehicle (UAV) industry is poised for rapid growth, especially in

the aerial cinematography sector.

We propose a relatively low-cost, wide and dynamic-baseline stereo vision system

implemented using multirotor UAVs. Our goal is to introduce new, depth-perception

enhancing effects to the viewer (i.e. to give viewers an increased sense of scale). The

purpose of implementing the system with UAVs is to enhance the effect with dynamic

views and aerial perspective.

1.2 System Overview

In our system, two UAVs autonomously fly in a preprogrammed formation while

individually taking videos of a scene. The UAVs communicate to a ground control

station, which monitors vehicle health. The raw video is then processed and stabilized

using data about each vehicle’s state (position and attitude) recorded during flight.

Enhanced state estimation can achieved by incorporating computer vision-based UAV

localization. The processed videos are then ready to be viewed using a 3D display.

Figure 1.1 shows an animation of our system in flight. Here, two UAVs fly in a

formation while simultaneously recording video.

1

Figure 1.1: Perspective diagram of a wide-baseline UAV flight.

2

Chapter 2

Platform

Our platform is composed of two multirotor UAVs and filming cameras, an auxiliary

camera and embedded processor to allow vision-based localization, a 3D viewing

device, and base station for vehicle control. Careful thought went into picking the

our system components.

2.1 3DR X8 Multirotor UAVs

In selecting UAVs, we identified a variety of criteria on which to compare systems.

The platform selected needed to be capable of outdoor flight with sufficient stability

for high-resolution video capture. It had to be able to lift more than its ship config-

uration in weight, to accommodate the hardware additions described in section 4.2.

Mechanical robustness was also a consideration, as hard landings were likely to occur

during flight trials. Foremost on our list of criteria was ease of modification, so as to

minimize overhead in controlling and interacting with the system.

After considering a variety of UAVs from consumer toys to high-grade research

platforms, we selected the 3D Robotics X8 (shown in Figure 2.1). The X8 has 8

rotors in an X configuration, stacked vertically in pairs of two. This provides similar

flight dynamics and frame weight to a traditional quadrotor, but with the redun-

dancy, stability, and lift capacity of 8 rotors. The X8 is equipped with a PixHawk

flight controller running APMCopter firmware. The Pixhawk accepts pulse-position

modulated (PPM) radio commands. It also supports telemetry data output and con-

trol input over a UART connection using the popular MAVLink protocol. On the

X8, this is connected to a telemetry radio, allowing a ground station computer to

3

communicate directly with the Pixhawk during flight. In addition to sensor measure-

ments delivered over the telemetry link at rates of up to 4Hz, high-frequency data

for sensor measurements and internal data structures can be logged on-board and

downloaded after a flight. This is discussed further in Section 5.2. Both the hard-

ware and firmware of the PixHawk are open source, allowing us to gather a low-level

understanding to the flight stabilization and localization processes when necessary.

Figure 2.1: Unmodified X8 UAV designed by 3D Robotics.

The PixHawk acts as a safety measure for the system, since it can still land the

vehicle if radio control is lost or a battery reaches a dangerously low voltage. The

PixHawk has several different modes of operation, which support different degrees of

autonomous and user control. This allows for a safety override functionality. The

ground station places the X8 in GUIDED mode before sending commands. GUIDED

mode can be interrupted from the radio controller and the UAV can be placed in

a different mode to stop the execution of autonomous commands in the case of an

emergency.

2.1.1 Sensor Configuration

In its stock configuration, the X8 is equipped with an advanced sensor set sufficient

for basic localization and airborne stabilization. The Pixhawk flight control board

has an integrated Inertial Measurement Unit consisting of an L3GD20 3-axis 16-bit

gyroscope, an LSM303D 3-axis 14-bit magnetometer, and an MPU 6000 3-axis gyro-

scope. The Pixhawk also has an MS5611 barometer used for altitude measurements

[1]. Mounted on an elevated mast (visible near the top of Figure 2.1) are a uBlox

GPS and an additional HMC5883L compass unit [2]. The sensor data from these

4

devices are fused in a real-time Extended Kalman Filter running on the Pixhawk as

part of the X8’s embedded APMCopter firmware.

2.2 GoPro Hero 3 White

Each of our X8 UAVs is equipped with a GoPro Hero 3 White camera. The GoPro

makes an excellent camera for drone photography because of its small size and weight.

The Hero 3 provides 1080p video at 30fps, and is equipped with a wide-angle lens.

This lens facilitates dynamic cropping and repositioning of the displayed portion of

a frame, which will be useful in our digital stabilization and rectification algorithms,

discussed in Section 5.3.

The GoPro’s final strength lies in the variety of robust electronically-stabilized

mounts that have already been developed. We selected the Tarot T-2D brushless

gimbal as a mount for our systems. The T-2D provides mechanical roll and pitch

stabilization to the GoPro using an onboard inertial measurement unit and can be

powered by the X8’s main battery. The T-2D significantly attenuates two of the

dominant noise sources in the X8, since the UAV rolls and pitches to strafe forward,

backward, left and right.

2.3 Logitech C920

To augment the X8’s on-board sensor suite, we use a camera for relative position

measurement, as described in Chapter 4. For this camera, we selected the Logitech

C920 webcam. The C920 is capable of capturing full 1080p video with an on-board

H264 encoder, providing detailed imagery even at long distances. It also has auto-

focus capabilities suitable for outdoor use. Perhaps most useful is the extensive body

of work available online detailing how to use the C920 in robotics projects, including

software libraries, example code, and hardware modification guides. Specifically, we

remove the weighted base as described in [3], considerably reducing the flight weight

of the camera system. Also useful are Darling and Molloy’s notes on acquiring fast

video with the C920 on the Beaglebone Black [4], [5].

5

2.4 Beaglebone Black

To run the C920 and collect images when it is mounted on the X8 we us a Beaglebone

Black embedded Linux computer running Debian, shown in Figure 2.2. The Beagle-

Bone is equipped with an ARM Cortex A8 processor at 1GHz, 512 MB of RAM, and

4GB of on-board flash storage. We expand this with a 32 GB SD card to provide

room to store enough video for several flights. The Beaglebone supports the OpenCV

and Video4Linux libraries which we use to capture video. In addition to a USB port,

the Beaglebone Black has 65 GPIO pins total, with hardware support for UART,

SPI, I2C, and PWM communication.

Figure 2.2: Beaglebone Black embedded Linux computer.

2.5 Oculus Rift

While any 3D display technology should be sufficient for viewing our footage, we

selected the Oculus Rift Development Kit 2 virtual reality headset for several reasons.

The Rift provides an immersive viewing experience even at low resolutions. It has

extensive development support including an SDK and documented example projects

and, at $350, the Rift is considerably cheaper than multi-viewer 3D media, such as

3D TVs and projectors.

The Oculus Rift consists of two screens suspended in front of a viewer’s eyes, each

displaying image data for the left or right perspective. A converging lens is placed

in front of each screen to allow the viewer to comfortably focus on the screen even

though it is located very close to his or her face. Two different sets of lenses are

provided, which can be swapped out to provide a lower power for viewers who are

already nearsighted. The Rift features a resolution of 960x1080 per eye.

6

2.6 Ground Control Station

The two X8 UAVs are controlled from a ground control station running code to keep

their movements synchronized, as described in Chapter 3. The ground control station

is implemented on a 2013 Macbook Air (fittingly) with a 1.3 GHz Intel Ivy Bridge

Core i5 processor and 4 GB of RAM.

7

Chapter 3

UAV Control

As mentioned in Section 2.1, the X8 multirotor UAV comes equipped with a sensor

suite and Pixhawk flight controller for basic control and stabilization. However, a

higher-level control scheme is needed to fly the two X8 vehicles in formations necessary

to capture wide and dynamic baseline stereo footage. In our approach, we set up a

ground control station (GCS) that is able to receive messages from both vehicles and

send commands accordingly.

3.1 Overview

The GCS runs three processes: one client process for per vehicle that transmits and

receives messages directly from the corresponding UAV, as well as a server process

that monitors and synchronizes the clients. We implemented the finite-state machine

(FSM) controller shown in Figure 3.1. Our server program takes in a starting and

ending waypoint for each vehicle. Each waypoint contains a latitude, longitude, and

altitude (in meters). Each vehicle takes turns arming (enabling motors), taking off,

and flying to the first programmed waypoint. This is done to prevent any possible

collisions. After the two vehicles have reached their initial waypoints, they simultane-

ously fly, in a straight line, to their goal waypoint. During formation flight, the server

process synchronizes the vehicles as much as possible to prevent one vehicle lagging

behind the other. Figure 3.2 shows three of the many possible formations that can

be executed with our setup.

8

Figure 3.1: FSM-style controller running on server and client processes (second client
not shown).

9

Figure 3.2: Three possible flight formations for dynamic baseline effects.

3.1.1 Server States

The goal of the server is to monitor the messages from each client process, handle

errors, and close the connections when necessary. Closing connections is especially

important to prevent undefined behavior. The server sends messages to each client

to enable the clients’ next actions.

Start

In this state, the server listens for the two clients to accept the socket connection

(this will be discussed more in Section 3.2.3). Additionally, there is a timeout for

the clients to accept the connections; after the time allotted, the server transitions

to the EXIT FAILURE state and closes any open connections. Once connections are

established, the server transitions to the first Arm state.

Arm First

The server waits for a dummy message from each client to assess connection health.

This is done as a sanity check. If the messages are corrupted or do not reach in a

timely manner, the server transitions to the EXIT FAILURE state and closes any open

connections. After the messages have been verified, the server sends an “okay to arm”

message to the first client and transitions to the first Takeoff state.

Takeoff First

The server listens for an “armed” message from the first client. If the message in-

dicates that something went wrong during vehicle arming, the server transitions to

the EXIT FAILURE state and closes any open connections. If the message indicates

successful vehicle arming, the vehicle sends an “okay to takeoff” message encoded

with a target altitude to the first client. The server also transitions to the first Goto

state.

10

Goto First

The server listens for a “taken off” message from the first client. If the message

indicates any sort of error, the server transitions to the EXIT FAILURE state and closes

any open connections. If the message indicates successful vehicle takeoff, the server

sends an initial “Goto” message encoded with a GPS waypoint to the first client.

This waypoint is the starting location for the formation the UAV will be flying. The

server also transitions to the second Arm state, the state that handles arming the

second UAV.

Arm Second, Takeoff Second, Goto Second

The explanation for these states is nearly identical to the previous three states, except

that the server is interacting with the second client.

Formation

The goal of the set of states labeled Formation is to synchronize the two vehicles as

much as possible while they are flying their programmed formation. The formation

path for each copter is broken down into several intermediate waypoints. The server

waits until both vehicles have reached each intermediate step before allowing the

vehicles to move on. If any intermediate message from the vehicles indicates failure

to arrive at a waypoint, the server transitions to the EXIT FAILURE state and closes

any open connections.

Exit Success

The server transitions to an EXIT SUCCESS state once it receives messages from both

vehicles indicating that they have received their goal waypoint. The server closes the

open connections.

3.1.2 Client States

One client process is launched per vehicle. Each client program interfaces directly

with a vehicle through DroneKit subroutines across a telemetry link (see Section

3.2.2). The goal of the client is to assess the health of the messages coming from

the vehicle over the link, and relay these messages to the server process. Examples

11

of error messages that would force a transition to EXIT FAILURE include messages

indicating low battery, sensor glitches, and timeouts.

Connect

The client attempts to connect to the server and sends a dummy message upon

connecting. If the client detects that the server is not running, the client transitions

to the EXIT FAILURE state.

Arm

The client attempts to arm the vehicle tied to the client process. After receiving the

appropriate message from the server, the client sends an “arm” signal across telemetry

and switches the vehicle to GUIDED mode (the mode that allows for autonomous

control). The client then waits until it receives an acknowledgment from the vehicle

indicating successful arming and mode switching. If an error message is received from

the vehicle, or if the allotted time has passed (indicated by a timeout variable), the

client transitions to the EXIT FAILURE state and sends an error message to the server.

Takeoff

The client attempts to fly the vehicle directly upwards to the desired altitude. After

receiving the appropriate message from the server, the client sends a “takeoff” signal

encoded with a target altitude, obtained from the server, to the vehicle. The client

then waits for acknowledgement from the vehicle indicating that it is within a certain

range of the desired altitude. If an error message is received from the vehicle, or if

the allotted time to reach the desired altitude has passed, the client transitions to the

EXIT FAILURE state and sends an error message to the server.

Goto

The client attempts to fly the vehicle to the first programmed waypoint. After receiv-

ing an appropriate message from the server, the client process sends a “goto” signal

encoded with the initial waypoint to the vehicle. The client process then waits for

an acknowledgement from the vehicle indicating that it is within a certain radius of

the desired location. Once again, if an error message is received from the vehicle or

if the allotted time to reach the waypoint has passed, the client transitions to the

EXIT FAILURE state and sends an error message to the server.

12

Formation

In the set of states labeled Formation, the client process flies the vehicle along the

specified path. As mentioned in Section 3.1.1, the formation path for each vehicle is

broken down into several intermediate waypoints. The client process waits until the

vehicle has reached an intermediate waypoint before messaging the server. The client

does not proceed to the next intermediate waypoint until it has received an instruction

to do so from the server. If any error message is received during an intermediate state,

the client transitions to the EXIT FAILURE state and sends an error message to the

server.

Exit Success

Once the vehicle has reached desired waypoint, the client process transitions to the

EXIT SUCCESS state and closes the connection with the server.

3.2 Implementation Details

We implemented the FSM controller running on our GCS entirely in the Python

programming language. This was done mainly to take advantage of the several open

source Python modules for UAV and inter-process communication. Figure 3.3 shows

a diagram of our software stack.

3.2.1 MAVLink Bindings

As mentioned in Section 2.1, the Pixhawk control board receives control input over a

UART connection using the Micro Air Vehicle Communication Protocol (MAVLink)

[6]. This is connected to a telemetry radio to allow for control from a remote trans-

mitter using the MAVLink protocol. The MAVLink protocol allows for high-efficiency

packet transmission and is well tested across several platforms including the Pixhawk

and Parrot AR Drone.

A GCS must transmit messages using the MAVLink protocol in order to con-

trol a MAVLink-enabled vehicle. By default, MAVLink provides a binding to the

C programming language that allows the GCS to transmit C structures encoding

commands. A Python library named pymavlink built upon the C library provides

Python bindings and allows for the transmission of Python objects with MAVLink.

13

Figure 3.3: Software stack used. Dotted lines indicate third-party software

We do not directly use pymavlink in our implementations; however, both MAVProxy

and DroneKit (see Section 3.2.2) do. The pymavlink MAVLink binding provides the

first layer of abstraction in our software stack.

3.2.2 DroneKit

DroneKit [7] is a set of open source application program interfaces (APIs) developed

by 3D Robotics that allows for the development of software applications to control

UAVs using the MAVLink protocol. It is built upon the pymavlink module. Cur-

rently, DroneKit provides APIs for Python, Java, and Android.

DroneKit’s Python module, droneapi provides a library of high-level classes for

general vehicle control. For our purposes, the most important class is droneapi.lib.Vehicle,

which provides several convenient methods. One Vehicle class is instantiated per

UAV connection. Once instantiated, we can use methods like Vehicle.commands.goto(lat,

lon, alt) to send the vehicle to a specific waypoint, Vehicle.commands.takeoff(alt)

to initiate a takeoff, and Vehicle.armed = True to arm the vehicle. We can also use

droneapi to change the vehicle’s mode, and send raw MAVLink messages.

Though the droneapi module is extensive, well-documented, and easy to use,

it still does not provide all of the functionality that we require for vehicle con-

trol. For this reason, we implemented our own wrapper module for droneapi called

14

copter control. Our copter control module contains a CopterControl class that

wraps several important droneapi methods, as well as new functions for setting vehi-

cle yaw and velocity (CopterControl.set yaw(th) and CopterControl.set velocity(v x,

v y, v z).

It is required that scripts using the dronapi module be run in the MAVProxy [8]

environment. MAVProxy is an open source, shell-like GCS environment built upon

pymavlink. Using MAVProxy is helpful because (1) all relevant UAV communication

modules needed by droneapi are loaded automatically and (2) through the use of

multithreading, it provides a live-feed of vehicle status information while a droneapi

script is running. However, a downside is that only one MAVProxy process can be

spawned per vehicle; our solution to this problem is described in Section 3.2.3.

To execute a droneapi script, we first spawn MAVproxy via python mavproxy.py

--args. Here args is the serial port on the laptop that the telemetry radio is con-

nected to. Once the MAVProxy shell loads, we can then load the droneapi module by

typing module load droneapi. We can then execute a script by typing api start

script.py. Figure 3.4 shows a screenshot of a what a typical MAVProxy session

might look like when running a simple droneapi script. Note that messages from the

vehicle and vehicle mode are displayed even while the script is executing.

Figure 3.4: Screenshot of MAVProxy shell when running a simple droneapi script.

3.2.3 Inter-Process Communication

One of the downsides of using DroneKit and MAVproxy is the lack of implicit multi-

vehicle support. One MAVProxy process can only handle one vehicle connection.

To overcome this, we launch two client scripts in two different MAVProxy processes

that communicate with a server process through socket connections (this was briefly

discussed in Section 3.1). Each MAVProxy process is spawned by specifying the serial

port of the telemetry radio communicating with the corresponding vehicle.

We utilize the Python socket module for inter-process communication (IPC).

Upon being spawn, the server process sets up a socket connection and binds to

localhost:8080 using the socket.socket constructor and socket.bind. The port

15

8080 is arbitrary, and any high-number port is okay to use. The server waits for

clients to connect using the socket.listen method.

Once a connection is established, message passing is handled using the socket.recv

and socket.send methods. Both methods expect a string format. The socket.recv

call is blocking, meaning that it waits until a message has been received before con-

tinuing execution.

We require a message format that allows us to encode commands and metadata,

as well as being easy to interpret pro grammatically. For these reasons, we chose to

pass messages in JavaScript Object Notation, or JSON. JSON is convenient because

it allows us to format each message in a consistent format and is easily interpreted

to Python dictionary data types using the Python json module. For example, to

send a ”takeoff to 15 meters” message to a client from the server, we construct a

dictionary of the form {"MSG":"TAKEOFF", "ARGS":[15]}. The ARGS entry has a

different meaning depending on the message. The dictionary can be dumped into a

JSON string using json.dumps; on the client’s end, a JSON string can be loaded into

a dictionary for easy interpretation using json.loads.

16

Chapter 4

Vision-Based UAV Localization

In order to increase the effectiveness of the video stabilization performed in post (see

Section 5), we require a precise relative position estimate between the two UAVs.

While the Pixhawk flight controller logs an extended Kalman filtered state estimate

that we can retrieve for video stabilization, we wish to increase the confidence of this

estimate through other techniques.

To this end, we considered several possibilities for accurately measuring the base-

line between the two drones. Our initial selected technique consisted of a laser-based

method, in which a reflective laser distance meter is used to measure the baseline of

the system. This laser would be mounted on one UAV using a two degree-of-freedom

targeting gimbal. Also mounted to this gimbal is a targeting camera that is used to

track an image on the other UAV, thereby keeping the laser centered on its target.

While we made significant progress on on the laser measurement system, our on-board

Beaglebone Black processor was not fast enough to allow for target tracking in real

time. Thus, centering the laser on the target in real time is not feasible with our

hardware (this is discussed more in Section 4.1).

While real-time laser measurement is not possible, we are able to get obtain reason-

able relative position estimates using purely computer-vision. Specifically, we mount

a neon-pink ball on one of the vehicles and a statically mounted Logitech C920 we-

bcam on the other (see Section 4.2). During flight, the webcam records video of the

other vehicle. In post-processing, we run a ball-tracking algorithm that logs both the

radius and position of the ball in the image plane. The radius is proportional to the

distance, while the ball’s position in the image plane gives us an estimate of the other

vehicle’s relative altitude and relative position along the axis perpendicular to the

baseline. Currently, we discard the radius measurement due to excessive noise.

17

4.1 Laser-Based Distance Measurement

While vision-based ball tracking provides a reliable method for measuring the relative

translation of the two UAVs in the directions orthogonal to the axis of the tracking

camera, depth measurements made using the apparent radius of the ball in the image

plane are less accurate. To compensate for this, we designed a system for using a

laser distance meter to measure the distance from the tracking camera to the ball.

The system uses a UNI-T UT390B laser distance meter, shown in Figure 4.1. The

UT390B is lightweight and small but highly accurate, providing sub-cm accuracy and

a range of up to 45m, all for about $50. The UT390B is packaged as a hand-held laser

tape measure. However, in addition to displaying measurements on an LCD screen,

it transfers its data over 115200 Baud UART accessible via an on-board debug port.

Instructions for modifying the UT390B are available online from Fuller [9].

Figure 4.1: UT390B laser distance meter used for depth measurement.

The UT390B and tracking webcam are mounted together in a 3D-printed housing

on a two degree-of-freedom gimbal actuated by high-torque servomotors, shown in

Figure 4.2. The laser system is powered by two voltage regulators - an LM7833 to

provide a constant 3.3V supply to the UT390B itself, and an LM7805 to provide power

to the servos. These can be powered using the X8’s onboard 12V supply, which is

intended for use with on-board video equipment.

A working prototype of the laser system was tested using a Beaglebone Black as

a control computer running the image capture and HSV masking routine described

in Section 4.4. While functional, the Beaglebone was unable to run the masking

algorithm quickly enough for responsive tracking at image sizes larger than 135x240

pixels. This severely limited the system’s usefulness in tracking applications where

the ball was further than three or four feet away, as would be the case in our system.

18

Figure 4.2: CAD model and 3d printed tracking gimbal for laser and targeting web-
cam.

4.1.1 Required Improvements for Practical Use

The laser system described above could be made fast enough for in-flight tracking if

the speed of the masking algorithm were increased or if a faster processing platform

was used. An algorithm that used a combination of image cropping and subsampling

to reduce the size of the image before searching for the ball could improve performance.

These size reduction operations could be performed based on the predicted position of

the ball using its history. Additionally, the processing platform could be upgraded to

a multicore or GPU-based system. Unfortunately, many processor architectures that

fit the speed requirements of the tracking system, such as the Nvidia Tegra, would

overload the X8’s on-board power supply, so there is a balance to be struck between

tracking performance and conformance to the power and weight capabilities of the

X8.

4.2 Flight Hardware Configuration

Without sufficient on-board processing power to run the full tracking gimbal and

laser, we statically mount the C920 webcam and Beaglebone Black near the front of

one X8, such that the camera is oriented sideways to observe the partner UAV. The

Beaglebone and camera are powered using a L78S05CV 5V regulator with a 10 watt

heat sink. The L7805CV can supply up to 2A of current, which is the recommended

amount for the Beaglebone Black when powering other components through the USB

port. The mount is constructed using laser-cut acrylic, aluminum standoffs and 3D-

printed components, designed to provide a firm and protective housing while providing

access to the Beaglebone’s ports, buttons, and status LEDs for debugging. On the

19

(a) C920 webcam and Beaglebone Black (b) Vision target ball

Figure 4.3: Mounting Configurations

second X8, a pink Styrofoam ball is mounted to act as a target for the vision tracking

algorithms.

The use of three separate cameras in the system necessitates a complicated startup

routine to ensure that the data from all sources is properly synchronized. The two

Gopros, the C920, and both Pixhawk flight controllers must all have their data ref-

erenced to a unified time frame for the rectification process described in Chapter 5.

We synchronize using the power LEDs on the two Pixhawks. The Pixhawk logs are

referenced to the moment 340ms after the power LED turns on. By filming the power

LEDs with all three cameras at during the initialization of the Pixhawks, we can

determine the time offset between videos and the time offset between each video and

the Pixhawk logs.

4.3 Existing Work

We considered several object tracking and detection schemes, such as mean shift,

ensemble of exemplar SVMs, and feature-based matching, before settling on our final

ball-tracking algorithm. Here, we provide a brief overview of the methods as relevant

to our project.

The mean shift algorithm, proposed by Cominiciu et al. [10], attempts to draw a

bounding box around an area of an image with maximum pixel intensity. The image

must first be filtered to highlight the pixels of the object to track. Mean shift is an

iterative algorithm that shifts the bounding window until the weighted mean of the

20

pixel intensity is in the center of the window. For our purposes, however, mean shift

does not suffice. The main drawback is that the size of the bounding box does not

scale with respect to the size of the object we are tracking. Since we wish to relate

the size of the tracked object to a relative distance measurement, knowing the size of

the bounding box is important. Mean shift is also not robust to occlusions [11].

The ensemble of exemplar support vector machines (SVMs) object detector, pro-

posed by Malisiewicz et al. [12], works by training a separate SVM (see Section

4.4.2) on different instances of an object and then using a sliding window detector

to calculate a response strength. The algorithm is robust and performs well, but is

unnecessarily complex and inefficient for our purposes. Unlike Malisiewicz et al., we

are trying to detect a specific object, not a category of objects.

Feature-based matching for object detection involves extracting keypoints (such

as SIFT [13]) in a template and scene, then determining correspondences between the

template and scene for object location [11]. During the early stages of our project,

we experimented with feature-based matching. While showing promising results, our

algorithm was computationally expensive and did not work for detecting templates

farther than 5 meters from the camera. This is because feature-rich keypoints become

much harder to detect as the template gets smaller.

4.4 Ball-tracking Algorithm

Our current method for vision-based UAV localization relies on a ball-tracking algo-

rithm that is fairly robust to occlusions, illumination variations, and distance. Addi-

tionally, our algorithm is efficient and simple to implement. Our method consists of

(1) background segmentation of the video frame using pixel classification, (2) erosion

and dilation for removing noise, (3) circle detection using the circle Hough Transform

(CHT) [14], and (4) low pass filtering radius and position of the detected circle (see

Algorithm 1). The crux of our method lies in the circle detection step using the CHT

(see Section 4.4.3). It should be noted that object detection using the CHT (and gen-

eral Hough Transform) is not novel (see Liu et al. [15] and Yu et al. [16] for examples,

as well as Yuen et al.[17] for a good discussion of the Hough Transform applied to

object detection). Additionally, the ability to segment out the background due to

the unique color of the ball greatly reduces the need for overly complex algorithms

for object detection. However, though our method provides us with usable results,

the Conditional Density Propagation (CONDENSATION) tracking algorithm [18] is

likely to improve tracking results in cluttered environments, and can be explored in

21

the future.

We implemented the ball-tracking algorithm entirely in the Python programming

language, making use of the OpenCV (cv2) [19] and scikit-learn (sklearn) [20] li-

braries.

Algorithm 1 Ball-tracking

while True do
frame num, frame← getVideoFrame()
if not isValid(frame) then

quit()
end if
mask ← segmentBackground(frame)
mask ← close(mask)
mask ← open(mask)
mask ← gaussianBlur(mask)
centerx, centery, radius = houghCircleTransform(mask)
if isValid(centerx, centery, radius) then
centerx, centery, radius← iirFilter(centerx, centery, radius)
log(frame num, centerx, centery, radius)

end if
end while

4.4.1 Naive Masking

The first step of our method is to segment out the background to highlight the ball,

making it easier to detect. Our initial approach consisted of converting the video

frame to hue-saturation-value (HSV) representation by utilizing the cv2.cvtColor

function. We then thresholded the frame, masking out pixels not within a certain

range of HSV values (this was done with help of the cv2.inRange function). The

result was a binary image, ideally with value 0 for a background pixel and value 1 for a

ball pixel. The benefit of working with the HSV model rather than the additive RGB

model is being able to separate color components from intensity, making parameter

tuning more intuitive.

Though this approach is intuitive and easy to implement, it requires constant

HSV threshold parameter tuning for different lighting situations, a tedious process.

Furthermore, it is often difficult to get reasonable masking since six parameters (an

upper and lower bound for H, S, and V) must be tuned manually. If the range is

too small, small disturbances can severely hinder masking. On the other hand, if the

range is too high, background pixels are falsely classified as ball pixels.

22

4.4.2 Image Segmentation using the Support Vector Machine

We implement background segmentation using a support vector machine (SVM),

saving us from excessive parameter adjustment.

Overview of the SVM

The SVM is a supervised learning model used for classification. Given a set of labeled

training data that are linearly separable into two classes, the SVM attempts to a fit

a hyperplane through the data that represents the largest margin between the two

classes.

Formally, the training data, D, consisting of n points can be denoted as

D = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}ni=1 (4.4.1)

where each xi is a p-dimensional vector. A hyperplane H takes the form

w • x + b = 0 (4.4.2)

where w ∈ Rp is normal to the hyperplane and b ∈ R is an offset. A hyperplane H
divides the space Rp into a positive half space and negative half space. Each point

x ∈ Rp can be assigned to a label ŷ = +1 if w • x + b ≥ 0 or ŷ = −1 if w • x + b < 0.

These conditions can be written compactly as

yi(w • xi + b) > 0 (4.4.3)

for i = 1, ..., n. Furthermore there exists a scalar α > 0 such that

yi(αw • xi + αb) ≥ 1. (4.4.4)

Since (w, b) and (αw, αb) define the same hyperplane, we can interpret 4.4.4 as

min
i
yi(w • xi + b) = 1. (4.4.5)

The distance between a point xi and hyperplane H can be written as

d(xi,H) =
yi(w • xi + b)

‖w‖
. (4.4.6)

23

We can thus maximize the margin of the hyperplane H by minimizing ‖w‖. For

mathematical convenience, the optimization problem is phrased in terms of 1
2
‖w‖2:

min
w∈Rp,b∈R

1

2
‖w‖2

s.t. yi(w • xi + b) ≥ 1

min
i
yi(w • xi + b) = 1, i = 1, ..., n.

(4.4.7)

It is not feasible to assume that the training data are linearly separable. Thus,

the concept of soft margin is introduced to allow for mislabeled training examples.

The new optimization problem can be written as

min
w∈Rp,b∈R

1

2
‖w‖2 + C

n∑
i=1

si

s.t. yi(w • xi + b) ≥ 1− si
si ≥ 0, i = 1, ..., n.

(4.4.8)

where each si is a slack variable representing the degree of misclassification of point

xi and C is the penalty for misclassification. A higher C parameter leads to better

classification of training data, but can lead to overfitting. The dual form of this

problem can be written as

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj(xi • xj)

s.t. 0 ≤ αi ≤ C
n∑
i=1

αiyi = 0.

(4.4.9)

It is also not feasible to assume that the training data are perfectly separable. It

is often better to create a nonlinear classification model. To do this, Vapnik et al.

introduced the “kernel trick” to replace the inner product (xi • xj) with a nonlinear

kernel function k(xi,xj). This allows for classification in a transformed, often higher-

dimensional, feature space. One of the most widely used kernels is the radial basis

24

function, which is denoted by

k(xi,xj) = e−γ‖xi−xj‖
2

. (4.4.10)

We use the radial basis function kernel for pixel classification. [21]

Pixel Classification Using the SVM

We use a two-class support vector machine to classify pixels in the video frame as

either “ball” pixels or “background” pixels. Each xi ∈ R3 is a pixel represented in

RGB color space.

To train the classifier, we compiled a set of images of the pink ball in various

lighting situations. We also compiled images of backgrounds that we would likely en-

counter in the flight videos. After formatting the pixel data, we train a SVM by cre-

ating an instance of the sklearn.svm.SVC and calling the fit(X, y) function. Here,

X is the training data and the vector y contains class labels. The sklearn.svm.SVC

class is based off the popular LIBSVM [22] library. During preliminary tests with

the trained model, false positives are weeded out through hard negative mining and

C and gamma parameters are tuned. Background segmentation is achieved by passing

in a formatted video frame to the model’s predict function. The result is a binary

mask, ideally with value 0 for a background pixel and value 1 for a ball pixel.

We obtain much more consistent, and often better, results using the SVM for

background segmentation over HSV mask. For a comparison of ball detection results

using HSV (using the same HSV parameters throughout) and SVM background seg-

mentation, see figure 4.4. Notice how HSV segmentation allows for ball detection

in cloudy and indoor environments, but not sunny environments. The SVM trained

with a single training data set performs well in all three environments.

4.4.3 Circle Detection

After the background has been successfully segmented out, circle detection (via the

CHT) is used to locate the ball in the image plane.

Preprocessing

We find that it is helpful to preprocess the mask before running the CHT algorithm.

Often times, the binary mask is noisy, containing falsely detected pixels and black

25

Figure 4.4: Comparison of ball detection results displayed on original frame using
HSV (top) and SVM (bottom) background segmentation.

specks in the ball region. Eroding and dilating the mask helps to solve both of these

problems. Erosion consists of convolving the binary mask with a square matrix ker-

nel of 1’s; a pixel in the image remains 1 only if all of the pixels in under the kernel

have value 1, else it is changed to 0. Dilation works in the same way, except that a

pixel in the image is 1 if at least one pixel under the kernel is 1. Dilation followed

by erosion, or “closing” helps to fill in the black specks found on the object. Ero-

sion followed dilation, or “opening” helps to remove white specks in the background

[23]. We close, then open the mask retrieved through pixel classification using the

cv2.morphologyEx function. See Figure 4.5 for a comparison of the raw mask and

the mask after morphological operations.

(a) Binary mask with no morpholog-
ical operations

(b) Binary mask with morphological
operations

Figure 4.5: Morphological Operations

We find that blurring the binary mask with a Gaussian kernel (after converting

26

the raw mask to a float representation) helps to remove high frequency noise, aiding

with the edge detection portion of the circle detection method described in the next

section. A Gaussian kernel is a square matrix that samples the 2D Gaussian function

f(x, y;σ) =
1

σ
√

2π
e−(x2+y2)/2σ2

(4.4.11)

within a certain range. We implement Gaussian blurring using the cv2.GaussianBlur

function.

Circle Hough Transform

After preprocessing the binary mask retrieved from background segmentation, we use

the circle Hough Transform to detect the ball’s radius and position in the image plane.

Recall that a circle can be parametrized as

x = a+R cos(θ)

y = b+R sin(θ)
(4.4.12)

where (a, b) are the coordinates of the center of the circle and R is the radius. The

basic idea of the CHT is that if a point (x, y) is fixed, then the parameter space

(a, b, R) is 3-dimensional. The set of all parameters satisfying 4.4.12 is a hollow cone

with apex (x, y, 0). Thus, in 3D space, circle parameters can be identified by the

intersection conic surfaces that are defined by points on the circle. This problem is

divided into two stages: (1) fixing radius and building a 2D accumulator matrix to

find optimal circle centers and (2) finding the optimal radii in 1D parameter space.

[14]

We use the cv2.HoughCircles(image, method, param1, param2) function for

circle detection using the CHT method. The function returns a list (x, y, r) triples

in order of confidence. The method parameter specifies which algorithm to use. We

use the Hough Gradient method (cv2.HOUGH GRADIENT) described by Yuen et al. [17],

which is efficient in both execution time and memory since it does not require the

expensive accumulator matrices described above. This method first runs a gradient-

based edge detection scheme. It then uses the gradient’s orientation in order to

determine the line on which the circle radius lives. The param1 parameter specifies

the gradient value to use, while param2 is the accumulator threshold. As param2

decreases, more false circles are detected. However, since we are interested in detecting

27

only one circle by retrieving the first element of the returned list, we can keep param2

fairly small.

4.4.4 Infinite Impulse Response Filter

We find that while the detected circle position and radius is accurate, it is jittery from

frame to frame. To overcome this, we low-pass filter the detected circle positions and

radii from frame to frame with a single-tap, recursive, infinite impulse response (IIR)

filter of the form:

y[t] = αy[t− 1] + (1− α)x[t]. (4.4.13)

Here x[t] is the unfiltered state of the current video frame. In our case, the state is

(x, y, r), denoting the detected circle’s (x, y) location and radius, respectively. The

y[t − 1] term is the filtered state of the previous frame, while y[t] is the current

frame’s filtered state. The α parameter determines how strongly high frequencies are

attenuated. A higher α value leads to a higher low-pass filter. Figure 4.6 shows the

absolute value of the filter’s frequency response for different values of α. Note how

high frequencies are more attenuated for higher values of α. [24]

Empirically, we found that an a value of α = 0.5 worked best for our application. It

should be noted that the idea to use low-pass filtering in object tracking applications

was brought up during a final project for COS 429: Computer Vision completed by

Ankush Gola and David Fridovich-Keil.

4.4.5 State Estimation Using Detected Ball

While robust, our ball-tracking algorithm fails to detect the ball in certain frames.

However, we can overcome this quite nicely using interpolation. In either case, having

found the pixel coordinates of the target ball, we now seek a reliable method for

estimating the location of the ball (and by extension the UAV carrying carrying it)

in three-dimensional space. Figure 4.7 shows the detected ball in a video frame.

We begin by defining several different coordinate systems. The first coordinate

system is the two-dimensional pixel coordinate frame, which is centered on the top

left corner of the each image. Its x axis extends to the right across the top of the

image and its y axis extends downwards along the left edge. Pixel coordinates take

28

Figure 4.6: IIR filter frequency response, plotted for different values of α.

Figure 4.7: Ball detected in a video frame.

the form of positive numbers restricted by the bounds of the image:[
x

y

]
, x ∈ [0, w), y ∈ [0, h) (4.4.14)

We can also represent points in the image using their homogeneous coordinates, allow-

ing affine and projective transformations to be represented using a matrix. Homoge-

neous coordinates can be thought of as an extension of standard Euclidean coordinates

where two vectors are equivalent if they differ by a constant factor. Homogeneous

coordinates define a point in projective space Pn. For a point in our 2D pixel frame,

the homogeneous coordinates take the form of a 3-vector (x, y, z)T . To convert the

29

point to R2, simply divide by the last element z: (x/z, y/z)T , assuming z is non-zero

[25]. For the purposes of the image plane homogeneous coordinate system, all points

with the same (x/z, y/z)T are the same point.

Our next coordinate system is the camera frame, C. The camera frame is a three-

dimensional coordinate system centered at the focal point of the camera’s lens, in

front of the image plane. Its z axis extends outward through the camera lens in the

direction of the scene, the x axis is oriented out the right side of the camera, and the

y axis extends downward through the bottom of the camera. To transform points

in the camera frame to image homogeneous coordinates, we use the intrinsic camera

matrix F:  x

y

z


image

= F

 x

y

z


C

=

 fx 0 cx

0 fy cy

0 0 1


 x

y

z


C

(4.4.15)

fx and fy are the focal length of the camera in the x and y directions. (cx, cy)
T

is the center of the image in pixel coordinates. We can calculate the intrinsic ma-

trix using opencv’s function cv2.calibrateCamera(objectPoints, imagePoints),

which uses a set of image points and their corresponding camera coordinates to cal-

culate the camera’s intrinsic matrix. We acquire these points by taking images of a

checkerboard pattern with a known dimension and planar shape (figure 4.8), using the

image acquisition script provided by Rillahan [26]. For the Logitech C920 webcam,

we calculate

F ≈

 1528 0 967

0 1524 572

0 0 1

 (4.4.16)

Since F governs the projection of points from the camera coordinate frame into the

image pixel homogeneous frame, we can use F−1 to find pixels’ camera coordinates.

It’s important to note that the depth of a pixel in camera coordinates cannot be

determined from its pixel coordinates alone. The result of the F−1 transformation is

merely a direction in the camera frame. As with the homogeneous pixel coordinates,

this vector can be scaled by any factor still represent the same point.

We convert this direction to a point by assuming the distance between the two

UAVs is approximately the desired baseline b. We approximate the location of the

ball in camera coordinates as:

XC =
b

‖F−1Ximage‖
F−1Ximage (4.4.17)

30

Figure 4.8: Typical camera calibration image.

For the state estimate of the ball to be useful in the sensor fusion techniques of

Section 5.2, we must not only construct an estimated location for the ball, but also

a covariance matrix describing our certainty in that estimate in three-dimensional

space. For now, we represent the covariance by selecting six points that might be

drawn from the probability distribution representing the ball’s location. These points

are located close to the ball in the x and y dimensions of the camera frame, but

far away from it in the z dimension, indicating that our state estimate has a high

degree of certainty in the ball’s position perpendicular to the z axis, but very little

information about its depth. These points are propagated through subsequent frames

with the center point, and their covariance is calculated as the last step in the state

estimation process. These covariance points are shown in green in Figure 4.9.

Having determined the location of the mean and edges of the ball’s location distri-

bution in the camera frame, we then transform these points into the X8 body frame,

B. This frame has its positive x axis extending out the front of the X8, y axis directed

out the right side of the UAV, and z axis directed downward out of the bottom of

the X8. To move into the body frame from the camera frame, we merely swap the

negative z axis with the positive y axis:

 x

y

z


B

= RBC

 x

y

z


C

=

 1 0 0

0 0 −1

0 1 0


 x

y

z


C

(4.4.18)

This is equivalent to a roll rotation of 90o downward, as we will see.

Our next coordinate frame is the vehicle frame, V , which has the same center as

the body frame, but axes aligned with the cardinal directions. Positive x is North,

positive y is East, and positive z is directed downwards. The X8’s onboard IMU

31

provides a highly accurate estimate of its roll (ϕ), pitch (θ) and yaw (ψ). As noted

in [21] and [27], these angles provide the Tait-Bryan parameterization of the rotation

from the vehicle frame to the body frame. The corresponding rotation matrix can be

calculated as follows:

RBV = RϕRθRψ

=

 1 0 0

0 cos(ϕ) sin(ϕ)

0 − sin(ϕ) cos(ϕ)


 cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)


 cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1



=

 c(θ)c(ψ) c(θ)s(ψ) −s(θ)
s(ϕ)s(θ)c(ψ)− c(ϕ)s(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ) s(ϕ)c(θ)

c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ) c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ) c(ϕ)c(θ)


(4.4.19)

Each individual rotation matrix Rα applies a clockwise rotation to a point about the

axis in question. It’s important to note that this clockwise rotation (which would not

be considered right-handed) corresponds to a counter-clockwise rotation of the axis

itself. Thus, if the angles (ϕ, θ, ψ) denote the heading of the multirotor in the vehicle

frame, RBV represents the rotation that must be applied to points in the vehicle frame

to find their coordinates in the body frame. We are interested in (RBV)−1 = RVB, which

transforms points from the body frame the vehicle frame.

Our final reference frame is the inertial frame, I. This coordinate frame has axes

parallel to the vehicle frame, but translated such that the origin of the coordinate

system is always located at the position from which the X8 took off. The X8’s GPS

and on-board sensor fusion techniques provide a location estimate of the observing

UAV in this frame, which can be used to translate between the vehicle and inertial

frames. If T is the location of the X8 in the inertial frame, the location of a point in

the vehicle frame is:

XI = XV + T (4.4.20)

Putting all this together, we can transform a point in homogeneous image coor-

dinates to the inertial frame using:

XI = RVBR
B
CF
−1
(

b

‖F−1Ximage‖
F−1Ximage

)
+ T (4.4.21)

The red path shown in figure 4.9 is produced by applying this transformation to

32

a dataset collected during an actual flight. Appropriately, the path of the visually

localized UAV appears to grow less accurate as it grows further from the observing

UAV.

Figure 4.9: 3D plot of vision-based state estimation output in the inertial frame. Blue
shows the position of the tracking UAV based on GPS and internal state estimation
filters. Red shows the estimated position of the tracked UAV based only on visual
information. Green points indicate the variance estimate transformed into the inertial
frame for a single measurement.

33

Chapter 5

Post-Processing and Video

Stabilization

Video clips collected with the X8s are subject to a variety of noise sources. The

most significant of these are due to the physical movements of the UAVs in response

to perturbations such as wind and atmospheric conditions. These movements result

in image distortions as the perspective of each camera is translated and rotated in

three-dimensional space, which must be accounted for in order for the video to be

comfortably viewed in stereo. We establish maximum tolerable amplitudes for image

movement in Section 5.1 and describe our technique for reducing apparent movements

to within these thresholds in Section 5.3. Section 5.2 describes our state estimation

and sensor fusion method for refining our estimate of each X8’s position and heading,

a prerequisite for accurate rectification.

5.1 Thresholds for Comfortable Viewing

Before we attempt to rectify images collected in flight into comfortably viewable 3D

video, we must first establish the human tolerances for camera movement in a stereo

system.

5.1.1 Human Depth Perception

The human visual system uses a variety of cues to provide depth information. These

include lighting, texture, and occlusion contours in monocular images. Depth infor-

34

mation is also gained through stereopsis, wherein the horizontal disparities between

images from different eyes provide 3D information. Stereopsis augments monocular

cues and aids with depth perception even when a relatively complete depth map can

be constructed from solely monocular cues [28]. In stereopsis, cortical signals from

the brain instruct the eyes to converge, or toe inward, until horizontal disparities in a

region of focus are eliminated. The two images are then fused together and perceived

as a single 3D scene with depth information [29].

Visual Discomfort

While stereopsis is a very effective means of depth perception in the real world, there

are a variety of factors that can cause discomfort or failure in the human stereo vision

system when exposed to simulated stereopic effects. Park et al. describe several of

these effects, including asthenopia (eyestrain), nausea, and reduced visual sensitivity.

Diplopia (double vision) can occur if the horizontal disparity between the two images

is too great [29]. Limits on the region in which stereopsis can occur have been studied

by many including Yeh and Silverstein, who determine that diplopia begins when the

horizontal disparity between two images exceeds the fusional area of the viewer [30].

These problems can easily arise in a poorly designed 3D image viewing system, and

care must be taken to ensure that viewer discomfort does not arise. We attempt to

characterize the specific sensitivity thresholds for users of the Oculus Rift in Section

5.1.2.

Error Correction

The human visual system corrects for misalignment of the two eyes largely through

angular adjustments through the extraocular muscles around each eye. Six muscles

on each eye are responsible for these rotations. Graham provides a thorough overview

of their function: the lateral and medial recti rotate the eyes in the horizontal plane,

towards or away from the nose. The superior rectus and inferior oblique both raise

the eyes and control their roll, depending on the convergence of the gaze. The inferior

rectus and superior oblique both lower the eyes and control their role, again depending

on the convergence of the gaze [31].

The visual system’s ability to correct for misalignments in specific directions is

known as fusional amplitude. Fusional amplitude is greater in the horizontal direction,

since it relies on the same advanced structures that mediate the convergence and

divergence of the eyes [32]. This implies that our system must not permit a severe

35

amount of vertical disparity between the two images.

5.1.2 Oculus Rift Simulations

We use simulated three-dimensional scenes viewed with the Oculus Rift to character-

ize the tolerances for movement unique to our viewing medium. All simulations are

produced in Blender, an open-source 3D modeling and graphics suite, using python

scripting to automate batch processes.

Figure 5.1: Left and Right eye perspectives of simulation environment.

In a simple 3D environment featuring a floating cube (shown in Figure 5.1), we

begin by generating independent Gaussian-distributed camera movements in three

dimensions. Viewers begin to have difficulty fusing the images when the standard

deviation of the noise between the two cameras rises above 4% of the baseline. At

this point, the cube begins to move in and out of fusion, with viewers seeing double

and having difficulty focusing. This indicates that for aerial shots taken at a baseline

of 10m, the individual images must not appear to be taken from perspectives with

more than 40cm of undesired movement.

Humans with average vision rarely have difficulty viewing objects at short dis-

tances, since the standard human focal range and ocular convergence limits allow a

person to view objects within a few centimeters of their face, which is a much shorter

distance than is encountered in everyday life. However, our system will increase the

minimum viewing distance significantly, since an expanded baseline stereo system re-

quires much higher rates of convergence to view objects at the same absolute distance

(see Figure 5.2). Additionally, the geometry of the Oculus Rift places further con-

straints on minimum viewing distance. For these reasons, a precise characterization

of the minimum viewing distance is also important to our project. We find that ob-

jects located closer than 350% of the baseline to the subject become difficult to fuse

36

Figure 5.2: Geometric diagram of stereopsis at two different baselines, b1 > b2. Ac-
cordingly, the angle of convergence for the lines of sight is greater for larger baselines
when viewing subjects at the same distance

in the Oculus Rift. Very close objects require uncomfortable degrees of convergence,

and also begin to blur as the focal length assumed by the brain to correspond to such

high degrees of convergence is outside focal powers that can be corrected by the Rift’s

lenses. This means that two UAVs flying at a baseline of 10m should not be used to

film subjects closer than 35m.

5.2 Sensor fusion

Given data from both UAVs’ real-time state estimation routines and relative position

information from the vision tracking system described in chapter 4, we seek a cohesive

state estimate for both UAVs that incorporates the data from both sources. State

space techniques for sensor fusion have the benefit of accounting for the history of

measurements from all sources when estimating the state at any given moment. This

can considerably increase their accuracy provided their method for propagating the

state estimate across time accurately represents the dynamics of the real system.

5.2.1 Dynamic Model

Before we can apply state-space filtering techniques to the X8, we must develop a

dynamic model which describes how the multirotor system evolves over time and

responds to control inputs. The dynamics of a traditional quadrotor are well-studied

and can be adapted to the X8 multirotor without much trouble. As in Section 4.4.5,

37

we discuss coordinate systems in terms of the body, vehicle, and inertial frames. From

Beard [27] and Tang [33], we know that the dynamics of a traditional quadrotor system

can be characterized using a 12-dimensional state vector:

x =
(
x y z u v w ϕ θ ψ p q r

)T
(5.2.1)

Where (x, y, z)T represents the location of the quadrotor in inertial coordinates using

the North-East-Down (NED) positive axes convention, (u, v, w)T is the corresponding

right-handed velocity vector in the quadrotor’s body frame, (ϕ, θ, ψ)T is the roll-pitch-

yaw rotation vector to move from the vehicle frame to the quadrotor’s body frame,

and (p, q, r)T is the corresponding angular velocity vector in the vehicle frame.

The three-dimensional rotation matrix to rotate from the vehicle frame to the

body from can be calculated using Equation 4.4.19, restated here for convenience.

R = RϕRθRψ

=

 1 0 0

0 cos(ϕ) sin(ϕ)

0 − sin(ϕ) cos(ϕ)


 cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)


 cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1



=

 c(θ)c(ψ) c(θ)s(ψ) −s(θ)
s(ϕ)s(θ)c(ψ)− c(ϕ)s(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ) s(ϕ)c(θ)

c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ) c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ) c(ϕ)c(θ)


This rotation matrix allows us to express the first set of differential state equations,

which describe the evolution of the quadcopter’s position in terms of its body velocity:

 ẋ

ẏ

ż

 = R−1

 u

v

w

 (5.2.2)

where R−1 = RT transforms the body frame velocities to the vehicle frame. The

body frame velocities change according to:

 u̇

v̇

ẇ

 =

 rv − qw
pw − ru
qu− pv

+

 −g sin(θ)

g cos(θ) sin(ϕ)

g cos(θ) cos(ϕ)

+ 1/m

 0

0

−F

 (5.2.3)

38

where the first term in the right hand side of the equation represents the Coriolis

Effect as the quadcopter rotates in the inertial frame, the second represents the force

of gravity transformed into the body frame, and the third represents the net thrust

of all motors in the body frame. The transformation from the vehicle frame angu-

lar velocities (p, q, r)T to the angular displacements (ϕ, θ, ψ)T produces the relevant

differential equation:

 ϕ̇

θ̇

ψ̇

 =

 1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) sec(θ) cos(ϕ) sec(θ)


 p

q

r

 (5.2.4)

and finally, assuming the inertia matrix of the quadcopter is diagonal:

I =

 Ix 0 0

0 Iy 0

0 0 Iz

 (5.2.5)

Our final differential equation is:

 ṗ

q̇

ṙ

 =


Iy−Iz
Ix

qr
Iz−Ix
Iy

pr
Ix−Iy
Iz

pq

+


τϕ
Ix
τθ
Iy
τψ
Iz

 (5.2.6)

where τϕ, τθ, and τpsi are the torques about the roll, pitch, and yaw axes respectively.

We can further simplify Equations 5.2.3 and 5.2.6 if we assume that the second-order

angular velocity terms are small:

 u̇

v̇

ẇ

 =

 −g sin(θ)

g cos(θ) sin(ϕ)

g cos(θ) cos(ϕ)

+ 1/m

 0

0

−F

 (5.2.7)

 ṗ

q̇

ṙ

 =


τϕ
Ix
τθ
Iy
τψ
Iz

 (5.2.8)

Equations 5.2.2, 5.2.4, 5.2.7 and 5.2.8 provide a nonlinear, time-invariant dynamic

model relating a set of generalized control inputs (F, τϕ, τθ, τψ)T and the state elements

39

from Equation 5.2.1 to the first derivative of the state.

Adaptation of Model to X8

Figure 5.3: Traditional quadcopter body frame (left) and X8 body frame (right) with
directions of positive rotation indicated.

To adapt the generalized quadrotor model to the X8, we first must express the

control inputs (F, τϕ, τθ, τψ)T in terms of the X8’s eight motor inputs. The torques

and forces on a traditional quadrotor can be expressed as a linear combination of

motor inputs: 
F

τϕ

τθ

τψ

 =


k1 k1 k1 k1

0 −lk1 0 lk1

lk1 0 −lk1 0

−k2 k2 −k2 k2



δf

δr

δb

δl

 (5.2.9)

Here δf , δr, δb and δl are the front, right, back, and left motor inputs, respectively,

and l is the distance from each motor to the center of the UAV. To adapt this to

an X8, we first modify the motor matrix to describe a quadrotor with a body frame

whose axes do not pass through the locations of the motors. Instead the motors

are distributed at the front right, front left, back right, and back left corners of the

quadrotor (Figure 5.3).


F

τϕ

τθ

τψ

 =


k1 k1 k1 k1

−wk1 wk1 −wk1 wk1

lk1 lk1 −lk1 −lk1
−k2 k2 −k2 k2



δfr

δfl

δbr

δbl

 (5.2.10)

40

where l is distance from each motor to the pitch axis and w is the distance from each

motor to the roll axis.

Having adapted the motor matrix to a multirotor with an X motor configuration,

we now modify it for an 8-motor system. This changes the 4 × 4 motor matrix to a

4× 8 matrix describing how the 8 motor inputs affect the force and torques.


F

τϕ

τθ

τψ

 =


k1 k1 k1 k1 k1 k1 k1 k1

−wk1 wk1 −wk1 wk1 −wk1 wk1 −wk1 wk1

lk1 lk1 −lk1 −lk1 lk1 lk1 −lk1 −lk1
k2 −k2 −k2 k2 −k2 k2 k2 −k2





δfru

δflu

δbru

δblu

δfrl

δfll

δbrl

δbll


(5.2.11)

where δflu is the front-left-upper motor input, δbrl is the back-right-lower motor input,

and so forth. This is the motor matrix for the X8.

Having developed a dynamic model, we seek to identify the values of the parame-

ters unique to our system. Many papers set out to characterize the system’s response

to angular control inputs, modeling the UAV’s low-level controllers in the process.

This is the technique used by both Tang [33] and Bouffard [34]. While this approach

is useful for real-time filtering, where angular commands may be the only known

control inputs, we have access to the Pixhawk’s exact command outputs for all eight

motors through the UAV’s on-board logs. This makes it possible to model the UAV’s

physical dynamics alone, without prepending approximate angular controllers to the

model. In the model presented in Equations 5.2.2, 5.2.4, 5.2.7, 5.2.8, and 5.2.11, there

are technically eight parameters. However, since k2 and Iz only appear together, we

need only identify the value of the other six parameters and k2/Iz.

The parameters m, l, and w are easily measured directly, and their corresponding

values are shown in table 5.1. k1 is calculated using Equations 5.2.7 and 5.2.11. We

take the third dimension of the body frame and rearrange to find:

ẇ = g cos(θ)cos(ϕ)− k1
m

∑
δ (5.2.12)

k1 =
g cos(θ)cos(ϕ)− ẇ

1/m
∑
δ

(5.2.13)

41

Figure 5.4: Plot showing linear fit for parameter k1 using flight data. Deviations from
the fit line are due to atmospheric perturbations and winds, which are unaccounted
for in our model and assumed to be zero-mean.

To calculate the values of Ix and Iy, we take a similar approach with Equation

5.2.8.

ṗ =
wk1
Ix

(−δfru + δflu − δbru + δblu − δfrl + δfll − δbrl + δbll) (5.2.14)

q̇ =
lk1
Iy

(δfru + δflu − δbru − δblu + δfrl + δfll − δbrl − δbll) (5.2.15)

Ix =
wk1
ṗ

(−δfru + δflu − δbru + δblu − δfrl + δfll − δbrl + δbll) (5.2.16)

Iy =
lk1
q̇

(δfru + δflu − δbru − δblu + δfrl + δfll − δbrl − δbll) (5.2.17)

The same is possible for the final model parameter, k2/Iz.

ṙ =
k2
Iz

(δfru − δflu − δbru + δblu − δfrl + δfll + δbrl − δbll) (5.2.18)

k2
Iz

=
ṙ

δfru − δflu − δbru + δblu − δfrl + δfll + δbrl − δbll
(5.2.19)

To find values for these parameters empirically, we fly the X8 through a variety of

accelerative maneuvers while logging motor values and accelerations from the on-

board IMU. We then fit the parameter values to the recorded data. The fit for k1 is

shown in Figure 5.4. The parameters determined through these fitting processes are

shown in Table 5.1.

42

Table 5.1: Dynamic model parameters as measured on the X8.

Parameter X8 with target ball
m 2.9 kg
l 0.1516 m
w 0.2357 m
Ix 0.3789 kg*m2

Iy 0.06193 kg*m2

k2/Iz 0.00009875 hz2

k1 0.00922 N

5.2.2 Unscented Kalman Filter

Having derived an effective system model, we wish to combine our camera-based posi-

tion estimate with the X8’s GPS- and IMU-based position estimate using state-space

filtering techniques. This sensor fusion problem is well-studied, and near-optimal

solutions exist for many classes of systems. The Kalman filter is one of the most

fundamental state space filtering techniques, providing an optimal solution for linear

systems with Gaussian white measurement noise. The Kalman filter maintains an

estimate of the system mean x̂ and its covariance P. The filter operates in two steps:

predict and update. In the predict step, the system mean and covariance matrix

are propagated forward in time through the system model, causing the covariance to

expand as the uncertainty in the system model decreases the certainty in the state

estimate. In the update step, the propagated state estimate is fused with a new

round of sensor measurements, reducing the covariance. The crux of the filter is

the Kalman gain, which determines how heavily the existing state estimate should

be weighted against the new measurements [35]. Our system is nonlinear, so the

traditional Kalman filter is not applicable, but several variants of the Kalman filter

have been derived for use with nonlinear systems. These are not necessarily optimal

solutions to the state estimation problem, but they typically perform well.

The unscented Kalman Filter works by propagating so-called sigma points Xi
instead of directly propagating the system covariance estimate. These are points se-

lected from the state distribution and propagated forward such that their covariance

and mean propagated forward will provide an accurate “unscented” estimate of the

true system covariance and mean. The core of the algorithm is the unscented trans-

form, which computes the mean and covariance of the sigma points after passing

43

through the state transition function:

x̂ =
∑
i

wiXi

P =
∑
i

wi(Xi − x̂)(Xi − x̂)T .
(5.2.20)

Here, each wi is a weighting factor

wi =
1

(2n+ k)
(5.2.21)

where n is the state dimensional and k is a scale factor.

Predict

In the predict step, the Unscented Kalman Filter calculates the mean and covariance

of system for the time step using the process model. First, the sigma points X and

weights w = (w1, ...wn) are calculated. The sigma points are fed through the process

model:

Xf = f(X , t)) (5.2.22)

where f is the process model.

Then, the prediction equations are applied:

x̂− =
n∑
i=1

wiXfi

P− =
n∑
i=1

wi(Xfi − x̂−i)(Xfi − x̂−i)T + Q.

(5.2.23)

Here, x̂− and P− are the state estimate and covariance estimate before the update

step and Q is the process noise matrix. In our case, we calculated Q through trial

and error.

Update

The update step of the filter takes place in measurement space. In our case, noisy

measurements from the vehicle logs and vision-based localization are fused to produce

a more confident state estimate. First, the sigma points calculated in the previous

44

step are fed through the measurement function, h(X):

Xh = h(X) (5.2.24)

.

The mean and covariance of these points is then calculated:

xz =
n∑
i=1

wiXhi

Pz =
n∑
i=1

wi(Xhi − xi)(Xhi − xi)
T + R.

(5.2.25)

Here, R is the measurement noise matrix. See Section 4.4.5 for details about how we

calculate this matrix.

The residuals y between the measurement vector z and expected measurement xz

are calculated:

y = z− xz (5.2.26)

The cross variance of the state and the measurements is given by:

Pxz =
n∑
i=1

wi(Xi − xi)(Xhi− xzi)
T . (5.2.27)

. The Kalman gain K can then be computed:

K = PxzPz
−1. (5.2.28)

Finally, the new state estimates and covariances can be computed:

x̂ = x̂− + Ky

P = P− −PKPzK
T .

(5.2.29)

[36]

Implementation and Results

We implemented our sensor fusion using the unscented Kalman Filter module pro-

vided in the Python filterpy library [37]. Specifically, we wrote code to model the

45

process mentioned in Section 5.2.1, and retrieve measurements from our ball-tracking

and vehicle motor input logs. We then used the update and predict functions pro-

vided by filterpy.kalman.UKF for the relevant time steps during our formation

flight to retrieve the enhanced state estimate of the observed vehicle.

Figure 5.5: 3D plot of sensor sensor fusion probability distributions for a specific
instance in time. The blue points represent the path of the observer drone. The
camera estimate distribution is represented by the red points and the observed X8’s
distribution is shown in green. Black points represent the fused state estimate, at the
intersection of the two sensor distributions.

Figure 5.5 displays the shapes of the relevant covariance distributions for a single

instance in time. As noted in Section 4.4.5, the covariance of the ball location is long in

the direction parallel to the C920 camera axis, but thin in directions perpendicular to

this axis. The covariance of the X8’s on-board state estimate is rounder, but slightly

larger in the directions where the camera state estimate is very thin. The fused state

lies more or less at the intersection of these two distributions, with deviations due to

the weighting of the propagated state estimate and covariance, which is not show in

Figure 5.5. Figure 5.6 shows the means of the various state estimates across time for

a single flight. The fused state estimate is smooth due to the state propagation steps

and the smoothness of the X8 state estimates, but as the X8’s GPS-based estimate

begins to drift off course, the fused estimate remains centered on the visual data.

46

Figure 5.6: 3D plot of the X8’s location estimate (green), image-based state estimate
(red), and fused state estimate (black). The observer UAV’s path is shown in blue in
the foreground.

5.3 Camera Frame Corrections

After fusing our sensor data into an accurate state history, we apply perspective

corrections to the image to undo the undesired movements and rectify the images

into a comfortably-viewed stereo pair within the tolerances discussed in section 5.1.

Several existing methods for this style of stereo rectification have been proposed,

discussed in section 5.3.1. While effective for individual stereo pairs, none of these

techniques provide persistence of movement across time, which is vital to comfortable

video viewing. We discuss our modification to existing techniques to provide this

stability in sections 5.3.2 and 5.3.3.

5.3.1 Existing Stereo Rectification Techniques

One way to reduce visual discomfort and enhance stereopsis from our stereo video is

to transform each pair of frames such that corresponding points are aligned along the

vertical axis. This technique is called stereo rectification. Stereo rectification is used

in practice to reduce the complexity of correspondence matching [25]. We explored

two of the most popular techniques to perform stereo image rectification, described by

Hartley [38] and Fusiello et al. [39] and tried applying them to our video stabilization

problem. However, we decided to move to simpler techniques described in 5.3.2 and

5.3.3. This was done for two main reasons: (1) the stereo rectification techniques

unpredictably shear frames, (2) the rectification techniques do not let us specify a

47

target yaw and pitch for the camera perspectives. We concluded that these techniques

are overly complex for our purposes and are best used for rectifying individual stereo

frames to reduce the difficulty of finding correspondences. However, we provide an

overview of both mentioned methods.

Epipolar Geometry

Before we provide a explanations of Hartley’s and Fusiello et al.’s methods, we provide

a brief overview of epipolar geometry.

Epipolar geometry describes the projective geometry between two different views

of an object. It is essential for understanding stereo rectification.

The most important concept in epipolar geometry is the fundamental matrix,

denoted by F, a 3×3 matrix of rank 2. Let X denote a point in 3D world coordinates

in P3 and (x1,x2) denote the projection of X to the image planes in P2 of the first

and second cameras, respectively. The points in the image plane satisfy the relation

x2TFx1 = 0. (5.3.1)

Figure 5.7 diagrams important features in the epipolar geometry between two

cameras. X is a point in world coordinates and (x1,x2) are the projections onto the

image planes of the two cameras. The line segment connecting the camera apertures

C1 and C2 is called the baseline. The plane π is called an epipolar plane, as is

any plane containing the baseline. The points p1 and p2 are called the epipoles and

are particularly important in epipolar geometry. By definition, the epipoles are the

points of intersection between the baseline and image planes. The epipoles have four

properties important for our purposes: (1) all pairs of matching points (x1,x2) exist

on a line (an epipolar line) containing their image planes’ respective epipoles, (2) the

epipoles are the nullspace of F and FT , (3) if the image planes are parallel to the

baseline, the epipoles go to infinity, (4) each epipole is the projection of the other

camera’s aperture. [25]

48

Figure 5.7: .Epipolar geometry between two image planes in a stereo setup. Adapted
from [25].

Hartley

Hartley’s method attempts find a homography H1 to warp the first camera’s image

plane based on the constraint that the image plane’s epipole p1 gets mapped to

infinity (1, 0, 0)T . With the constraint, H1 still has four degrees of freedom. It is then

necessary to find a matching homographic transformation H2 to warp the second

camera’s image plane. Hartley’s chooses a second homography H2 that minimizes the

least-square distance of corresponding points on the horizontal axis of the rectified

pair of images.

Hartley’s method works for both uncalibrated and calibrated cameras. If the cam-

era system is uncalibrated (i.e. each camera’s intrinsic matrix and the [R|t] between

the cameras is unknown), the fundamental matrix F must be estimated by matching

keypoints (such as SIFT[13]) and using an iterative technique such as random sam-

ple consensus (RANSAC) [40] to account for keypoint outliers. Fundamental matrix

estimation introduces errors and significant computational complexity, so it desir-

able to have a calibrated system. The epipoles can then be calculated by solving for

the nullspace of F and FT. If the camera system is calibrated, the epipoles can be

calculated using the fact that each epipole is the projection of the other camera’s

aperture:

p1 = P1O
2

p2 = P2O
1

(5.3.2)

49

Here (P1,P2) are the camera matrices of the first and second cameras, respectively

and (O2,O2) are the respective camera centers in P2. [38]

Fusiello, Trucco, and Verri

Fusiello et al.’s method produces similar results to Hartley’s method but always as-

sumes that the stereo setup is calibrated.

The algorithm is remarkably simple and consists of (1) introducing a new coor-

dinate system with the x-axis parallel to the baseline, y-axis orthogonal to the new

x and old z axis, and new z-axis orthogonal to the new x and y axes, (2) producing

a new extrinsic matrix R based on the new coordinate system, (3) producing an ad-

justed pair of intrinsic camera matrices K that is arbitrary, (4) computing the new

camera matrices using the new extrinsic rotation matrix defined by R and a new t

defined as −ROi, where each Oi is the respective camera center, and (5) extracting

a transformation Ti for each camera by multiplying the first 3 columns of the newly

found camera matrices by the inverse of the old camera matrices.

Though Fusiello’s method is more compact and easier to implement in practice

than Hartley’s, it fails remarkably when there is pure forward translation between

the two image planes. [39]

5.3.2 Rotational Corrections

Figure 5.8: Raw stereo pair from a 40m baseline.

The rectification problem presented by our system is somewhat unique in that

it requires a progression of well-aligned stereo pairs that also present smooth and

continuous motion across time. While Fusiello’s and Hartley’s methods are effective

for individual stereo pairs, we desire not only to rectify our stereo images to each other,

50

but also to the prior and subsequent images. We therefore develop a rectification

scheme that allows us to designate a desired attitude for both cameras and rotate

both images to align with that attitude. This is similar to Fusiello’s method, but

it is permitted and expected to leave a residual translational disparity between the

two camera coordinate systems. We discuss methods for rectifying this translational

offset in section 5.3.3.

We begin by identifying the camera projection matrix for the GoPro, as we did

for the C920 in section 4.4.5. Again using Rillahan’s image collection script [26], we

collect a total of 80 calibration images of our checkerboard pattern using the GoPro.

Our empirically calibrated camera matrix for the GoPro at full resolution is:

F ≈

 1653 0 936

0 1665 530

0 0 1

 (5.3.3)

The GoPro differs from the C920 in that it applies a significant barrel distortion to

the images, causing straight lines in the image to bulge towards the edges of each

frame. To remove this distortion, we can also use cv2.calibrateCamera to return a

set of five distortion coefficients. These coefficients describe a function for mapping

points from their directly projected (x, y)T pixel coordinates to distorted coordinates

that account for the camera’s radial and tangential distortion. This function is as

follows:

x′ = x(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xy + p2(r

2 + 2x2) (5.3.4)

y′ = y(1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y2) + 2p2xy (5.3.5)

Where r2 = x2 + y2 [19]. With the GoPro, we calculate the following values:

k1 ≈ −0.4838, k2 ≈ 0.4303, k3 ≈ −0.3120, p1 ≈ −0.00088, p2 ≈ 0.00879

(5.3.6)

We can use these parameters and the opencv function cv2.undistort() to remove the

distortion from the GoPro. This is an important step, since the standard homographic

image rotations assume that the image being rotated is not heavily distorted. A

sample stereo pair after undistortion is shown in figure 5.9. For comparison, the

original image is shown in figure 5.8.

After removing the image’s barrel distortion, we can go about applying our rota-

51

Figure 5.9: Stereo pair after undistortion. Straight lines in the camera frame now
appear straight in the image.

tional corrections to rectify the image to our desired attitude. As described in section

2.2, a Tarot gimbal is used with each GoPro to stabilize rotations around the pitch

and roll axes. The gimbal does not stabilize in the yaw direction. Our process for cor-

recting yaw movement is mathematically similar to the process for rotating through

different reference frames discussed in section 4.4.5.

We begin with a multiplication by F−1 to transform points from homogeneous

image coordinates to the camera frame. Because of the gimbal, which decouples the

camera’s movement from that of the quadcopter body frame, we do not transform

from the camera frame into the body frame as in section 4.4.5. Instead, we transform

into an intermediate frame, L, which has its x axis directed forward out of the camera

lens, its y axis directed out the right side of the camera, and its z axis directed down

through the bottom of the camera. The corresponding rotation matrix is:

RLC =

 0 0 1

1 0 0

0 1 0

 (5.3.7)

From here, we can apply equation 4.4.19 with ϕ = 0 (roll is removed by the gimbal).

For θ, we use the pitch of the GoPro in the gimbal. This is held constant by the

gimbal, but is not necessarily zero, since the Tarot gimbal allows the user to set a

desired pitch. The vehicle yaw provides the final Tait-Bryan parameter, ψ. The

resulting rotation matrix, RLV , can be inverted and used to translate points into

the vehicle frame. We apply the reverse process using the desired yaw heading to

transform points back into the desired camera frame. We also allow the user to set

a desired pitch for each camera that remains constant throughout a video shot, since

52

manufacturing differences between the two gimbals produce pitch disparities between

the images (visible in figure 5.9). Our final transformation is as follows:

P = F(RLC)−1R(0, θdesired, ψdesired)R(0, θactual, ψactual)
−1RLCF

−1 (5.3.8)

We use the opencv function cv2.warpPerspective to apply P to all points in an

image. A resulting stereo pair is shown in figure 5.10.

Figure 5.10: Stereo pair after rotational corrections.

5.3.3 Translational Corrections

Applying rotational corrections to images collected with our X8 system removes the

majority of undesired movements in the image plane. However, In general, it is not

possible to undo a translation applied to an image using only homographic transfor-

mations. The act of translating a camera causes objects to change location relative to

each other in the image plane, and in many cases new occlusions may occur or previ-

ously occluded objects may become visible. This means that complete knowledge of a

scene in three dimensions is necessary to perfectly undo general translations. We can

make approximate translational corrections if we assume the scene is planar, meaning

that all points in the image plane exist on the same plane when projected into the

camera frame. In this case, there are no occlusions to worry about and the relation-

ships between pixels in the image are such that the camera can be transformed with

a homography.

We can define a plane in the inertial frame using

1 = kXinertial (5.3.9)

53

where k is orthogonal to the plane and has a norm of 1/(the distance to the plane

from the origin). As explained by Ramadge [21], the homography to transform an

image from a position with translation T1 in I to a position with translation T2 in

I is

H = P− 1

1− kT1

F(RCLRdesired)
T (T1 −T2)(F

−T (R−1actualR
L
C)Tk)T (5.3.10)

Where P is defined in equation 5.3.8, Rdesired is the rotation from the vehicle frame

to the desired intermediate frame and mathbfRactual is the rotation from the vehicle

frame to the actual intermediate frame (discussed in section 5.3.3).

(a) Before rectification

(b) After rectification to move the
perspective 1m to the right and
down

Figure 5.11: Planar image rectification

If desired, our system allows the user to designate a plane equation for which this

homography will be computed and applied to the images, again using cv2.warpPerspective.

While this technique is effective for such scenes as are shown in figure 5.11, the major-

ity of scenes captured from a UAV in flight are not particularly flat, and so the planar

image assumption does not hold. The user can tune the plane equation to stabilize

those objects which are of interest, but other parts of the scene will be distorted.

54

Chapter 6

Conclusions and Future Work

Using our system, we are successfully able to obtain stable stereo footage viewable in

3D with novel effects, indicating that we are within the tolerances for human stereo

fusion. We are also able to successfully fuse the vehicle’s state estimate with state

estimates calculated through vision-based techniques. However, there are several

improvements that can be made to our system. Regardless, our work, especially

in vision-based UAV localization, vehicle modeling, and sensor fusion for enhanced

vehicle state estimation, lays the groundwork for future system enhancement.

6.1 Depth-Aware Translational Corrections

Perhaps the biggest improvement that can be made to our system is the introduction

of depth-aware translation video corrections. Currently, we use a planar image ap-

proximation mentioned in 5.3.3 that is a very poor approximation for several scenes.

Depth-aware translational corrections would make better use of the state estimate

achieved.

Calculating depth information for every point in the image from a single stereo

pair is often not feasible. Techniques that calculate dense point clouds, like Structure

from Motion (SFM) [41], work best with multiple frames of the scene. Furthermore,

these techniques are extremely computationally expensive.

We believe that the problem can be reduced by determining depth at only key-

points of the frame. This can be determined through stereo correspondence matching

[25]. Once depth information is calculated for a reasonable number of points, we

can fit a three-dimensional polygonal surface to the point cloud using a technique

55

such as Delaunay triangulation [42]. Each face of the polygonal surface can then be

translated with an individual planar image approximation. This technique would be

quite computationally expensive, but we believe efficiency can be achieved through

the use of GPU programming.

6.2 Online System

An online system would provide interesting new applications, including depth-perception

enhanced augmented reality and territory modeling. The ideal online system would

allow a user to control the vehicles while receiving a live, stabilized, stream of stereo

video.

With our platform, we are able to receive live state estimates over telemetry from

a vehicle at a rate of 4Hz (as opposed to the 50Hz sampling rate available from the

offline logs). If we were to implement an online system, the dynamic model described

in 5.2.1 would have to be reduced to account for the low sampling rate of live sensor

outputs.

An extremely high-bandwidth channel would have to be established between each

vehicle and the ground control station in order to stream live HD video. We believe

that free space optical communication (FSO) [43] would be the best option for this.

Realistically, reasonable results can also be achieved over network connections. Fur-

thermore, substantial computational power would be needed to stabilize the videos

in real time. This can be achieved through the use of GPUs.

56

Bibliography

[1] 3D Robotics. 3dr pixhawk. https://store.3drobotics.com/products/

3dr-pixhawk, 2015.

[2] 3D Robotics. 3dr ublox gps with compass kit. https://store.3drobotics.

com/products/3dr-gps-ublox-with-compass, 2015.

[3] [Banto]. Removing the hinged base from the logitech c920 webcam [video file].

https://www.youtube.com/watch?v=a39iWgSwaBk, 2012.

[4] Michael Darling. How to achieve 30 fps with beaglebone black, opencv, and

logitech c920 webcam. http://blog.lemoneerlabs.com/3rdParty/Darling_

BBB_30fps_DRAFT.html, 2013.

[5] Derek Molloy. Beaglebone: Video capture and image processing on em-

bedded linux using opencv [video file]. http://www.youtube.com/watch?v=

8QouvYMfmQo, 2013.

[6] Lorenz Meier, JF Camacho, B Godbolt, J Goppert, L Heng, M Lizarraga, et al.

Mavlink: Micro air vehicle communication protocol. http://qgroundcontrol.

org/mavlink/start, 2013.

[7] Kevin Hester. Dronekit. http://dronekit.io/, 2015.

[8] Andrew Tridgell and Stephen Dade. Mavproxy: A uav ground station software

package for mavlink based systems. http://tridge.github.io/MAVProxy/,

2013.

[9] Andrew Fuller. Arduino laser tape measure. http://blog.qartis.com/

arduino-laser-distance-meter/, 2013.

57

https://store.3drobotics.com/products/3dr-pixhawk
https://store.3drobotics.com/products/3dr-pixhawk
https://store.3drobotics.com/products/3dr-gps-ublox-with-compass
https://store.3drobotics.com/products/3dr-gps-ublox-with-compass
https://www.youtube.com/watch?v=a39iWgSwaBk
http://blog.lemoneerlabs.com/3rdParty/Darling_BBB_30fps_DRAFT.html
http://blog.lemoneerlabs.com/3rdParty/Darling_BBB_30fps_DRAFT.html
http://www.youtube.com/watch?v=8QouvYMfmQo
http://www.youtube.com/watch?v=8QouvYMfmQo
http://qgroundcontrol.org/mavlink/start
http://qgroundcontrol.org/mavlink/start
http://dronekit.io/
http://tridge.github.io/MAVProxy/
http://blog.qartis.com/arduino-laser-distance-meter/
http://blog.qartis.com/arduino-laser-distance-meter/

[10] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature

space analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 24(5):603–619, 2002.

[11] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer-

Verlag New York, Inc., New York, NY, USA, 1st edition, 2010.

[12] Tomasz Malisiewicz, Abhinav Gupta, and Alexei A Efros. Ensemble of exemplar-

svms for object detection and beyond. In Computer Vision (ICCV), 2011 IEEE

International Conference on, pages 89–96. IEEE, 2011.

[13] Tony Lindeberg. Scale invariant feature transform. Scholarpedia, 7(5):10491,

2012.

[14] John Illingworth and Josef Kittler. The adaptive hough transform. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, (5):690–698, 1987.

[15] Hong Liu, Yueliang Qian, and Shouxun Lin. Detecting persons using hough

circle transform in surveillance video. In VISAPP (2), pages 267–270, 2010.

[16] Xinguo Yu, Changsheng Xu, Hon Wai Leong, Qi Tian, Qing Tang, and

Kong Wah Wan. Trajectory-based ball detection and tracking with applications

to semantic analysis of broadcast soccer video. In Proceedings of the eleventh

ACM international conference on Multimedia, pages 11–20. ACM, 2003.

[17] HK Yuen, John Princen, John Illingworth, and Josef Kittler. Comparative study

of hough transform methods for circle finding. Image and vision computing,

8(1):71–77, 1990.

[18] Michael Isard and Andrew Blake. Condensation - conditional density propagation

for visual tracking. International journal of computer vision, 29(1):5–28, 1998.

[19] G. Bradski. The opencv library. Dr. Dobb’s Journal of Software Tools, 2000.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[21] Peter Ramadge. Ele 488: Image processing. University Course, Spring 2015.

58

[22] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-

chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,

2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[23] Gary Bradski and Adrian Kaehler. Learning Opencv, 1st Edition. O’Reilly

Media, Inc., first edition, 2008.

[24] John G. Proakis and Dimitris G. Manolakis. Digital Signal Processing (3rd

Ed.): Principles, Algorithms, and Applications. Prentice-Hall, Inc., Upper Sad-

dle River, NJ, USA, 1996.

[25] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[26] Chris Rillahan. Gopro lens distortion removal. http://www.

theeminentcodfish.com/gopro-calibration/, 2015.

[27] Randal W Beard. Quadrotor dynamics and control. Brigham Young University,

2008.

[28] Young Lim Lee and Jeffrey A Saunders. Stereo improves 3d shape discrimination

even when rich monocular shape cues are available. Journal of vision, 11(9):6,

2011.

[29] J Park, H Oh, S Lee, and AC Bovik. 3d visual discomfort predictor: Analysis of

disparity and neural activity statistics. 2014.

[30] Yei-Yu Yeh and Louis D Silverstein. Limits of fusion and depth judgment in

stereoscopic color displays. Human Factors: The Journal of the Human Factors

and Ergonomics Society, 32(1):45–60, 1990.

[31] Robert Graham. Extraocular muscle actions. http://emedicine.medscape.

com/article/1189759-overview, 2013.

[32] John A Pratt-Johnson. Central disruption of fusional amplitude. The British

journal of ophthalmology, 57(5):347, 1973.

[33] Sarah Tang. Vision-based control for autonomous quadrotor uavs. Undergradu-

ate thesis, Princeton University, 2013.

59

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.theeminentcodfish.com/gopro-calibration/
http://www.theeminentcodfish.com/gopro-calibration/
http://emedicine.medscape.com/article/1189759-overview
http://emedicine.medscape.com/article/1189759-overview

[34] Patrick Bouffard. On-board model predictive control of a quadrotor helicopter:

Design, implementation, and experiments. Technical report, DTIC Document,

2012.

[35] Robert F Stengel. Optimal control and estimation. Courier Corporation, 1994.

[36] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for non-

linear estimation. In Adaptive Systems for Signal Processing, Communications,

and Control Symposium 2000. AS-SPCC. The IEEE 2000, pages 153–158. IEEE,

2000.

[37] Roger Labbe. Kalman and Bayesian Filters in Python. First edition, 2013.

[38] Richard I Hartley. Theory and practice of projective rectification. International

Journal of Computer Vision, 35(2):115–127, 1999.

[39] Andrea Fusiello, Emanuele Trucco, and Alessandro Verri. A compact algorithm

for rectification of stereo pairs. Machine Vision and Applications, 12(1):16–22,

2000.

[40] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981.

[41] Jan J Koenderink, Andrea J Van Doorn, et al. Affine structure from motion.

JOSA A, 8(2):377–385, 1991.

[42] Der-Tsai Lee and Bruce J Schachter. Two algorithms for constructing a delau-

nay triangulation. International Journal of Computer & Information Sciences,

9(3):219–242, 1980.

[43] Vincent WS Chan. Free-space optical communications. Lightwave Technology,

Journal of, 24(12):4750–4762, 2006.

60

Appendix A

Code

Since our code is quite lengthy, we provide a link to a github respository containing

all of our relevant code files: https://github.com/agola11/SeniorThesis2015.

The copter control directory contains files relevant to our control scheme de-

scribed in Chapter 3. Here, the most important files are the server and client imple-

mentations, sock server.py and copter client.py respectively.

The ball tracker directory contains code relevant to our ball-tracking algorithm

described in Chapter 4. The important files are our IIR filter module iir filter.py,

ball-tracker module ball tracker.py (which contains majority of the logic), and the

files under the \svm directory for model training and testing.

Finally, the stereo rectify folder contains files relevant to our post-processing

pipeline described in Chapter 5. Here, the files ukf.py show our sensor fusion logic,

while the * reader.py and * rectify.py classes show logic for reading logs and

video stabilization, respectively.

61

https://github.com/agola11/SeniorThesis2015

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Motivation
	System Overview

	Platform
	3DR X8 Multirotor UAVs
	Sensor Configuration

	GoPro Hero 3 White
	Logitech C920
	Beaglebone Black
	Oculus Rift
	Ground Control Station

	UAV Control
	Overview
	Server States
	Client States

	Implementation Details
	MAVLink Bindings
	DroneKit
	Inter-Process Communication

	Vision-Based UAV Localization
	Laser-Based Distance Measurement
	Required Improvements for Practical Use

	Flight Hardware Configuration
	Existing Work
	Ball-tracking Algorithm
	Naive Masking
	Image Segmentation using the Support Vector Machine
	Circle Detection
	Infinite Impulse Response Filter
	State Estimation Using Detected Ball

	Post-Processing and Video Stabilization
	Thresholds for Comfortable Viewing
	Human Depth Perception
	Oculus Rift Simulations

	Sensor fusion
	Dynamic Model
	Unscented Kalman Filter

	Camera Frame Corrections
	Existing Stereo Rectification Techniques
	Rotational Corrections
	Translational Corrections

	Conclusions and Future Work
	Depth-Aware Translational Corrections
	Online System

	Code

